
i

Framework for evaluation of
parallel algorithms on clusters

BY MEHUL WARADE

SUPERVISED BY

PROF. JEAN-GUY SCHNEIDER

AND

DR. KEVIN LEE

Submitted as partial fulfilment of the requirements for the degree of

Bachelor of Software Engineering (Honours)

School of Information Technology

Deakin University

October 2020

ii

I certify the following about the thesis entitled

Framework for Evaluation of Parallel Algorithms on Clusters

submitted for the degree of Bachelor of Software Engineering (Honours), School of Information
Technology, Deakin University

(a) I am the creator of all or part of the whole work(s) (including content and layout) and that where

reference is made to the work of others, due acknowledgment is given.

(b) The work(s) are not in any way a violation or infringement of any copyright, trademark, patent, or

other rights whatsoever of any person.

(c) That if the work(s) have been commissioned, sponsored or supported by any organisation, I have

fulfilled all of the obligations required by such contract or agreement.

(d) That any material in the thesis which has been accepted for a degree or diploma by any university

or institution is identified in the text.

(e) All research integrity requirements have been complied with.

I certify that I am the student named below and that the information provided in the form is correct

Full Name: Mehul Vikas Warade

Signed:

Date: October 30, 2020

Abstract

For several decades, clusters have been used in high performance computing to achieve exceptional

performance. Single Board Computer (SBC) clusters were developed as an alternate to the traditional

clusters as they require no active cooling, less estate and consume a fraction of the energy consumed

by traditional cluster while providing competing computational performance. Traditional evaluation

protocols for cluster computing mainly focus on their run-time, accuracy and cross compatibility.

The downside to most current cluster evaluation frameworks is that they do not exploit one of

the strong points of single board computers -– their energy consumption. Motivated by this, a

novel idea is proposed to develop a framework for evaluating parallel algorithms on different cluster

architectures. A detailed illustration of the proposed framework, named FEPAC, is outlined. FEPAC

focuses on the energy consumption of the cluster and provides the analysis of a computation in the

form of performance per Watt (GFLPOS/W) and value for money (GFLOPS/$) for different cluster

architectures. This is particularly useful in developing more energy efficient algorithms and to provide

an analysis of the effects of different cluster architectures on the performance and cost of computation.

A qualitative and quantitative evaluation of the framework is performed to showcase its working,

confirm the results and align them to the requirements of the thesis. To show how the approach can be

applied, parallel algorithms from different domains are used to demonstrate the ability of FEPAC. A

detailed case study of implementation and evaluation of FEPAC for several parallel algorithms being

executed on a 7-node RPi3B+ cluster is used to evaluate the approach. FEPAC enables the energy and

computation characteristics of diverse algorithm to be measured and aids researchers in choosing a

suitable cluster configuration for their computation needs.

iii

Acknowledgments

Firstly, I would like to thank my supervisors - Jean-Guy Schneider and Kevin Lee, for their guidance

and support throughout the year, as well as years prior.

I would also like to thank the Deakin University for providing the necessary hardware, which made

the evaluation of this work possible.

Finally, I would like to thank my family for their support, and friends for tolerating me throughout this

journey.

iv

Contents

Abstract iii

Acknowledgments iv

Contents v

List of Figures viii

List of Tables x

Definitions of terms xi

List of Abbreviations xii

1 Introduction 1
1.1 Research Questions . 2

1.2 Contributions . 2

1.3 Thesis Structure . 3

2 Background 4
2.1 Methodology for literature review . 6

2.2 Hardware . 8

2.2.1 Processors . 8

2.2.2 Memory . 10

2.2.3 Cluster computing . 11

2.2.4 Single Board computers . 12

2.2.5 Summary . 13

2.3 Software . 13

2.3.1 Operating System . 13

2.3.2 Inter-node communication interface (MPI) 13

2.3.3 Storage Framework . 14

2.3.4 Job Schedulers . 14

2.3.5 Computing Libraries . 15
v

vi CONTENTS

2.3.6 Parallel Algorithms . 15

2.3.7 Summary . 18

2.4 Related Work . 18

2.4.1 Experimental Cluster Computing . 18

2.4.2 Energy Aware Cluster Computing . 19

2.4.3 Related work in benchmarking and evaluating clusters 20

2.5 Open Issues/ Gaps . 21

2.6 Summary . 22

3 Methodology 24
3.1 Research questions . 25

3.2 Paradigm . 25

3.3 Data Collection . 26

3.4 Validity and Reliability of Data . 26

3.5 Data Analysis Strategy . 26

3.6 Requirements . 27

3.7 Summary . 29

4 Design 31
4.1 Cluster . 32

4.2 Framework . 33

4.2.1 User Responsibilities . 34

4.2.2 Framework Functionalities . 34

4.3 Summary . 38

5 Implementation 39
5.1 Implementation of Computing Cluster . 41

5.1.1 Node Computer . 41

5.1.2 Retrieving Energy consumption values . 42

5.1.3 Cluster Setup . 44

5.1.4 Final Setup . 46

5.2 Implementation of Framework . 48

5.2.1 Framework language . 48

5.2.2 Configuration file . 49

5.2.3 Development of Individual Functionality . 50

5.2.4 Final Setup . 53

5.3 Summary . 55

6 Evaluation 56
6.1 Qualitative Evaluation . 56

CONTENTS vii

6.2 Quantitative Evaluation . 60

6.2.1 Multiple run of single experiment on different cluster configuration 60

6.2.2 Multiple run of single experiment with different data-set 62

6.2.3 Expansion on the functionality of the designed system 64

6.2.4 Algorithm Evaluation: Matrix Multiplication 65

6.2.5 Algorithm Evaluation: Kmeans . 67

6.2.6 Algorithm Evaluation: OpenCV filtering . 68

6.3 Summary . 69

7 Discussion 70
7.1 Helping researchers in deciding best optimal node for computing 70

7.2 Finding relationship between data set and energy 70

7.3 Helping researchers in predicting the computation time for an algorithm 71

7.4 Helping researchers in predicting the energy consumption of the cluster 73

7.5 Limitations . 74

8 Conclusion 76
8.1 Overview of Thesis . 76

8.2 Contributions . 77

8.3 Future Work . 78

8.3.1 Expansion to real-world workloads . 78

8.3.2 Cluster Improvements . 79

8.3.3 Framework Improvement . 80

8.4 Concluding Remarks . 81

Bibliography 82

A Configuration File 86

B Matrix Multiplication: Raw Data and Calculations 88

C OpenCV Algorithm: Raw Data 91

D Kmeans Algorithm: Raw Data 93

E Addition of new functionality through code (Using Plotly) 94

F Plotly Dashboard with the data from the framework 96

List of Figures

2.1 Flynn’s Taxonomy for parallel computing architecture (Flynn, 1966) 5

2.2 Classification of microprocessor. 9

4.1 Proposed Design for the Cluster hardware . 32

4.2 Proposed Design of the Framework . 33

4.3 Proposed set up of nodes in the cluster . 34

4.4 Splitting of data for cluster computing . 35

4.5 Running of an algorithm in a cluster . 36

4.6 Collecting energy consumption values . 36

4.7 Collecting and storing algorithm output data . 37

4.8 Exporting collected data to a file . 37

5.1 Implementation of the proposed cluster hardware . 40

5.2 Implementation of the proposed framework . 41

5.3 Raspberry Pi3B+ (Source: www.raspberrypi.org) . 42

5.4 Netgear GS110TP Fully Managed Switch (Source: www.netgear.org) 43

5.5 PoE Splitter (Source: https://core-electronics.com.au) 44

5.6 Web Interface for management of the switch . 44

5.7 Network Booting Steps . 46

5.8 Final Set Up of the Implemented Cluster . 47

5.9 Final Setup - Netboot and

Master node . 47

5.10 Final Setup - Slave nodes . 47

5.11 Collection of energy consumption values through code 50

5.12 Energy Values stored in local MySQL Database . 51

5.13 Using MPI to execute algorithm across multiple nodes 52

5.14 Exported data in JSON format . 53

5.15 Final Implemented Framework and its Menu . 54

6.1 Configuration File extract for target cluster configurations 58

6.2 Configuration file extract for instructions on execution of Algorithms 59
viii

www.raspberrypi.org
www.netgear.org
https://core-electronics.com.au

LIST OF FIGURES ix

6.3 Evaluation of Algorithm: Matrix Multiplication with different cluster configurations . . . 61

6.4 Evaluation of Algorithm: Matrix Multiplication (Data-set of 600) 62

6.5 Evaluation of Algorithm: Matrix Multiplication (Data-set of 720) 62

6.6 Evaluation of Algorithm: Matrix Multiplication (Data-set of 840) 63

6.7 Evaluation of Algorithm: Matrix Multiplication (Data-set of 960) 63

6.8 Exported data in a JSON format . 65

6.9 Algorithm Evaluation: Matrix Multiplication and Energy consumption 66

6.10 Algorithm Evaluation: Matrix Multiplication and Computation Time 66

6.11 Algorithm Evaluation: Kmeans and Energy Consumption 67

6.12 Algorithm Evaluation: Kmeans and Computation Time 68

6.13 Algorithm Evaluation: OpenCV and Energy Consumption 69

6.14 Algorithm Evaluation: OpenCV and Computation Time 69

7.1 Effects of different data-sets on Energy Consumption of an Algorithm 71

7.2 Ability to predict Algorithm Computation Time based on previous data 72

7.3 Ability to predict Energy Consumption based on previous data 73

List of Tables

2.1 Comparison of widely used single board computers.

Derived from (Cloutier et al., 2016) . 12

2.2 HPL benchmark results on different computers.

Derived from (Cloutier et al., 2016) . 21

5.1 RPi Operating System Distributions . 45

6.1 List of Algorithms Evaluated and their Parameters . 60

B.1 Raw Data Output of Matrix Multiplication Algorithm 90

C.1 Raw Data Output of OpenCV Filtering Algorithm . 92

D.1 Raw Data Output of Kmeans Algorithm . 93

x

Definitions of terms

Access The reading or writing of data

Algorithm A set of rules for solving a problem in a given number of steps.

Bandwidth The maximum data transfer rate of a network or Internet connection.

Code A language for expressing operations to be performed by a computer.

Computing Any goal-related activity comprising of computers.

Configuration
The particular hardware elements and their interaction in a computer system
for a particular period of operation.

Database Accessible collection of information

Dataset A file or group of files associated with one part of a study.

Energy consumption The amount of power used in a particular time

Framework Computer programs that perform various tasks

Instance A particular occurrence of an object defined by a class

Master-slave
A relationship in which slave software obtains services from a
master on behalf of a person

Memory The fastest storage device of a computer.

Microprocessor/ CPU The main computer chip providing the speed and capabilities of the computer.

Node A member of a network

Operating System
Software that controls the basic, low-level hardware operations,
and file management.

Parallel computing Computations performed parallelly.

Parameter A value supplied to an algorithm.

Port The portion of a computer through which a peripheral device may communicate

Portable Able to be used by a variety of software on a variety of hardware platforms.

Program
A set of actions or instructions that a machine is capable of
interpreting and executing.

etc. etc.

xi

List of Abbreviations

AI Artificial Intelligence

ALU Arithmetic Logic Unit

CPU Central Processing Unit

DHCP Dynamic Host Configuration Protocol

DNS Domain Name System

FEPAC Framework for Evaluation of Parallel Algorithms on Clusters

FLOPS FLoating point Operations Per Second.

FORTRAN FOrmula TRANslation

GHz GigaHertz

GUI Graphical User Interface

I/O Input/Output

IC Integrated Circuits

IP Internet Protocol

Js JavaScript

MB MegaByte

MIMD Multiple Instruction Multiple Data

MISD Multiple Instruction Single Data

OpenCV Open Computer Vision

RAM Random Access Memory

ROM Read Only Memory

SBC Single Board Computer

SIMD Single Instruction Multiple Data

SISD Single Instruction Single Data

etc. etc.

xii

Chapter 1

INTRODUCTION

Energy consumption is one of the top challenges faced while achieving the next generation of super-

computing (Jin et al., 2017). Many power-saving techniques have been developed, and most hardware

components are approaching their physical limits. Parallel computing provides us with the technology

and means to achieve the ever-increasing demands of computing. Traditionally, clusters were developed

with performance in mind and hence they were infrastructures requiring expensive cooling mechanism

installed and high energy consumption. This has promulgated the creation of huge data centres that

have heightened the energy demand (Kaur and Chana, 2015).

Single board computers (SBCs) are complete computers developed on a miniaturised single circuit

board. They were introduced for educational purposed and to teach the workings of a computer, but

development in processors have led to introduction of more advanced and powerful Single Board

Computers. Architecturally, SBCs are multiprocessor-based hardware units that provides all the

features of a traditional computers. They have the ability to perform reasonably well when compared

to contemporary devices in terms of cost and power consumption (Cloutier et al., 2016). Due to their

multi-core nature, they can be optimised to achieve computations faster by using their inherent parallel

capabilities.

The performance or execution time of a parallel computation depends on many factors such as

architecture, the compiler, Operating System used, the environment used for parallel programming

and the model used by the environment (Rauber and Rünger, 2013). While developing or choosing

for a platform to execute an algorithm all these factors need to be considered. However, there are

many complex interactions between these factors, and it is therefore difficult to consider them all

(Rauber and Rünger, 2013). This thesis investigates the current state of the art in parallel computing

and investigates the evaluation methods for different computations. This thesis also investigates how

to take advantage of SBC computing platforms and how they have been used in clusters to achieve

improved processing/computing times.

The focus of this thesis is on how to aid researchers in choosing energy efficient software or algo-

rithms for their computation needs. Specifically, the research presented in this thesis aims to investigate

the effects of computing (using different parallel algorithms) on different cluster configuration as seen
1

2 CHAPTER 1. INTRODUCTION

from an energy point of view. The proposed solution aims to be platform independent with minimal

installation required and number of configurable parameters according to the users needs. Using our

system, parallel computation done by a researcher can be evaluated and analysed to provide additional

analysis from performance and energy aspects.

The remainder of this chapter is structured as follows: in Section 1.1, an overview of this thesis

with the base research questions the work aims to answer is given. In Section 1.2 main contributions

of the work to the field of research are presented. Finally, in Section 1.3, the structure of the thesis is

summarised.

1.1 Research Questions

The research presented in this thesis aims to investigate the following research questions. These

questions are derived from the open issues and gaps identified in Chapter 2. The work presented aims

to answer these research question through formal research methods.

• How do different parallel algorithms executing on different cluster architectures affect the overall

performance?

• What is the best architecture design and specs of clusters for a researcher that want to test their

algorithm effectively?

• How does different cluster configuration affect the energy consumption during computation?

• How do researchers choose a particular cluster for their computation needs?

• How to achieve a platform independent framework with consistent results?

1.2 Contributions

The main contributions of this work are as follows:

• Literature review in the field of parallel computing

The state-of-the-art in the field of parallel computing and the research gaps found during the

survey of related work in the field are documented in Chapter 2. The literature review is

important as it provides the required background knowledge for understanding the work done in

this thesis and provides information on the current research being conducted in the field.

• Design of a Framework for evaluating parallel algorithms

The design of a system which evaluates different parallel algorithms on different cluster configu-

ration is the major contributing factor as different implementations can be done for an abstract

design which can meet the research questions. Evaluation of one such implementation, called

FEPAC, is provided and show how the research questions are addressed.

1.3. THESIS STRUCTURE 3

• Evaluation of the Framework using qualitative and quantitative means

Extensive evaluation on FEPAC by-using both qualitative and quantitative analysis is performed.

The evaluation helps in understanding the aims of the thesis and how they co-relate to the

framework’s design and implementation.

1.3 Thesis Structure

The remainder of this thesis is structured as follows:

Chapter 2 introduces the field of parallel and cluster computing. A comprehensive analysis of the

state-of-the-art in the field of parallel cluster computing is presented with focus on energy consumption.

The chapter concludes with a brief discussion on the research gaps identified during the review of the

relevant literature.

Chapter 3 presents the general methodology adopted while developing the framework. It includes

a discussion of the approach undertaken and principals followed while designing and evaluation of the

framework. The Chapter also discusses the requirements for the proposed design of the system. The

requirements were devised after analysis of the research questions and the final goal of the thesis.

Chapter 4 presents a detailed design of the proposed framework. The chapter includes high level

abstract working of the project and the how it can achieve the requirements set out in Chapter 3. This

consists of a comprehensive design based on requirements set out in Chapter 3 and goals of this thesis.

This chapter, along with Chapter 3, enables a researcher to understand the underlying workings of the

framework so that they can modify it to meet their particular needs.

Chapter 5 presents the central contribution of the thesis – FEPAC, a framework developed to

evaluate parallel algorithms on different cluster configurations. The framework is implemented

following the abstract design in Chapter 4. The implementation is divided into two parts - the hardware

and software implementation. The chapter explains in detail the specific steps undertaken to achieve

the final proposed system.

Chapter 6 presents the qualitative and quantitative evaluation of the framework. Different function-

alities of the framework are evaluated and quality checked based on their relevance with the thesis’s

goals and showcases how the framework achieves to answer the research questions and close the

research gaps. A quantitative evaluation is performed to show the workings of the framework and to

guide the user on different conclusions that can be devised from the results. Chapter 3, 4 and 5 together

can allow a researcher to replicate the whole work and compare its workings with the original results.

Chapter 7 discusses the findings in the thesis and connects them to the research question. The

results from Chapter 6 are used to showcase other scenarios in which the designed system can help

researchers understand and analyse their computation. The quantitative data in Chapter 6 is used to

discuss and showcase a number of scenarios where the framework can help the user to achieve the

problem statement of our thesis. Finally, Chapter 8 highlights the major results of the work presented

in this thesis, connecting them to the research questions, and discussing potential future expansions of

the work.

Chapter 2

BACKGROUND

The modern world is full of data driven technologies which demand more and more analysis and

management to produce effective results. As predicted by Moore’s law (Moore et al., 1965), advances

in processors and technology has led to increased performance of modern hardware. Algorithms are

used to reduce the manual work and effectively utilise the ever-growing computer technologies to their

full extent. For the purposes of this study, an algorithm is considered as a well-defined computational

procedure that takes some value, or set of values, as input and produces some value, or set of values as

output (Cormen et al., 2009). Newer technologies and advancements lead to exponential growth in the

amount of data that needed processing (Berman and Paul, 1996). Hence, computers with powerful

computation capabilities are used to process the amount of data generated.

Parallel computing is defined as simultaneous use of multiple computer resources to solve a

computational problem (JéJé, 1992). Parallel computing is achieved through implementation of

parallel algorithms on a computing platform. Following limitations of serial computers paved a way

for research in parallel computing (Barney et al., 2010):

1. Transmission speed: The speed of a computer directly relates to the speed of data in the hardware.

Limits of hardware speed (Copper wire – 9cm/nanosecond) have already been reached. Hence,

there was a need to find other ways to improve performance.

2. Limits to miniaturisation: There is a limit up-to which the number of transistors on the chip can

be increased.

3. Economic limitations: Multi-cores processors were used when single core processors were not

enough to fulfil the computing needs. It was expensive to make a single processor faster than

that whereas using many moderately fast processors to achieve the same (or better) performance

is less expensive.

4

5

Michael Flynn, in 1966, classified parallel computer architectures based on the instructions, data

and processing sequences (or streams).

Figure 2.1: Flynn’s Taxonomy for parallel computing architecture (Flynn, 1966)

1. Single Instruction and Single Data Stream (SISD):

SISD is the conventional sequential computer in which the CPU fetches a single instruction

(I) from the memory and processes a single stream of data (D). There is no parallelism either

in instructions or data streams. Examples include Minicomputers, Uni-processors and old

mainframes.

2. Single Instruction and Multiple Data Stream (SIMD):

In SIMD, a single instruction is set to be executed for multiple data. SIMD based computers are

the most natural form of parallel computers. Examples include graphics processor units (GPUs),

Intel and AMD multi-core processors.

3. Multiple Instruction and Single Data Stream (MISD):

In this architecture, multiple instructions operate on the same data independently during a clock

cycle. This architecture is rarely used. Examples include pipe-lined computers and real time

systems such as space shuttle control system.

4. Multiple Instruction and Multiple Data Stream (MIMD):

MIMD architecture is used in parallel systems. Multiple instruction works on multiple data

stream independently of each other. They execute asynchronously and each processor works on

its own instruction. Examples include supercomputers and all multi-core PCs.

An MIMD architecture system that shares a common memory is known as multiprocessors, while

those that uses an interconnection network is known as multi-computer (Alghamdi and Alaghband,

2020). Distributed systems are a type of multi-computer system where the processors are physically

6 CHAPTER 2. BACKGROUND

far away from each other and communicate with each other through network. The distance between

the nodes can range from being in the same room to being across the globe.

During initial stages, computers used to process the data sequentially (step-by-step) to produce

results. Introduction of multiprocessors led to development in the field of parallel processing and

algorithms. The main purpose of using parallel processing is to perform computations faster by

utilising a number of processors concurrently (JéJé, 1992). In parallel computing, a complex problem

is split into different parts that can be executed in parallel (simultaneous), synchronised and then

recombined to form the final outcome. It improves the response time along with making use of all

the available computing resources (Berman and Paul, 1996; Xu and Wunsch, 2005). The concept

of a cluster was introduced when people first tried to spread different jobs over more computers and

then gather back the data those jobs produced (Weiss 1992). A cluster is a collection of number

of processors which are distributed on different computer systems and are connected to each other

through a communication medium (e.g. a network). All the processors work in unison to execute a

parallel algorithm and provide the necessary speedups that modern computation needs.

The remainder of this section is structured as follows. Section 2.1 presents a brief discussion of the

methodology used while identifying related work. Section 2.2 and Section 2.3 focuses on the hardware

and software requirements for cluster computing respectively. This will help the reader understand

the basics of the work presented in this thesis. Section 2.4 provides the state of the art in SBC cluster

computing domain with focus on experimental and energy aware computing. The section also lists

popular clusters developed in the past, and their unique features. Different techniques and methods

used to evaluate, and benchmark clusters have been documented in Section 2.4 as well. Section 2.5

provides a list of open issues and gaps found in the literature. Finally, Section 2.6 summarises and

analyses the whole literature review with a list of open issues and gaps found in the field. These gaps

form the base for our thesis and the aim is to solve these gaps through the proposed solution in the

thesis.

2.1 Methodology for literature review

The literature review is the first and the most important step in research process for qualitative,

quantitative and mixed research studies (Onwuegbuzie et al., 2012). A good literature review can

help researchers or readers with a wide variety of benefits which can help summarise the related work

in whole and provide some strong conclusions on the literature (Onwuegbuzie et al., 2010). For the

purposes of this study, following six steps for good literature review as presented by Fraenkel et al.

(1993) were followed:

1. Define the research problem as precisely as possible.

The research problem is the high level aim of the thesis. The research problem defined for this

thesis was - “How does different cluster architectures affect different algorithms and how all of

this affect the overall performance, energy and quality?”. It is important to define the research

2.1. METHODOLOGY FOR LITERATURE REVIEW 7

problem precisely as this needs to be answered at the end of a research project. The research

problem was identified by a number of steps - choosing a domain of interest, doing preliminary

research and asking high-level and open-ended questions regarding the topic.

2. Look at relevant secondary sources.

Once the central aim and research problem is defined and understood, the next step is to search

for the sources which can help in better understanding the research problem. Secondary sources

of information include anything that analyses or interprets events in the past. For this literature

review, secondary sources of information included review papers, journal article, conference

proceedings, etc. These sources reflected the current theories and understanding of the past.

3. Select and peruse one or two appropriate general reference works.

The second step resulted in a collection of vast variety of available data and literature relevant

to the research problem. The next step was to filter and select the literature which is more

relevant to the aims of the research. This filtering process was done using a wide number of

parameters including but not limited to the date of publications, credibility of authors, reliability

and relevance.

4. Formulate search terms (key words or phrases) pertinent to the problem or question of interest.

Based on the general reference chosen, the next step included an in-depth research of the research

problem. The first step in doing so was to find the most relevant search terms from the references

found in previous steps. Search terms are words or phrases that you enter into search engines.

They represent the main concepts of your research topic and without the right keywords, its very

hard to find relevant articles.

The search terms used to find relevant material for this research included - Distributed systems,

Algorithms, Parallel Computing, Partitioning, Scheduling, Distribution, Cluster, Server, Master,

Slave, Cloud Clusters, Scaling, Supercomputer, Computer architecture, Low cost, Efficient,

Energy, Power Measurement.

5. Search the general references for relevant primary sources.

Primary sources provide first-hand information regarding a topic. This can include the basics of a

theory or concepts which have been introduced long time ago or the latest experiments conducted

to validate a theory. This literature might not be directly related to the work but they provide

the base which is required to understand the work presented. For this thesis, primary sources

of information included books on basic concepts relevant to the research problem, experiments

conducted and results published by researchers, etc.

6. Obtain and read relevant primary sources, and note and summarise key points in the sources.

The last step include documenting the most relevant bits and parts from all the sources and

presenting them in a concise and easy to understand manner.

8 CHAPTER 2. BACKGROUND

2.2 Hardware

As with any computation, the first step is to acquire the hardware on which the computation will be

performed. The resources used to implement parallel processing can be diverse and can include single

computer with multiple processors (multiprocessor) or multiple networked computers (multi-computer

or clusters) (Zargham, 1996). Multi-computer or cluster refers to many computers connected to

each other and performing like a single entity. Hardware is one of the most important and basic

part of any computation. Any form of computing is not possible without the availability of required

hardware resources. Also, slight changes in the hardware can result in huge improvement or decline in

performance. Hence, it is very important to discuss and understand the basics working hardware in

computing and also its impact.

As discussed above, clusters work by combing the computation power of individual nodes to solve

a problem. All the individual nodes and their hardware affect the overall performance of the cluster to

a huge extent. Choosing the correct hardware for nodes is one of the most fundamental decision in

starting to build a cluster. Processing unit (PU) is the common component of any computer. Apart

from the main processing unit, development of a cluster requires a number of other hardware such as

inter-connection cables, storage devices and up-to a certain limit cooling hardware.

2.2.1 Processors

Processor or Central processing unit (CPU) is the most basic component of a computer that includes a

processing unit and control unit (CU). It performs basic arithmetic, logic, controlling and input/ output

operations of the computer. Most modern CPU’s are microprocessors where the CPU is contained

on a single integrated circuit (IC) chip. The microprocessors in the CPU’s have been developed and

improved over the time and there have been number of different microprocessors based on different

needs developed. High-level classification of the available microprocessors with some widely known

examples are presented in Figure 2.2.

The main difference between CISC and RISC processors is that CISC approach attempts to

minimise the number of instructions by having a greater number of cycles per instruction whereas

RISC reduces the number of cycles per instruction at the cost of the number of instructions per program

(Akram, 2017). Most of the modern computers contain RISC processors and the progression from 8 to

16 to 32 bit architecture essentially forced the need for RISC architectures to be implemented (Blem

et al., 2013). Based on the RISC architecture and the need to miniaturise the CPU for portability, ARM

processors were developed. ARM stands for Advanced RISC (Reduced instruction Set Computer)

machine. ARM processors are extensively used in consumer electronics such as smartphones and other

wearable. They are small in size and lower power consumption while delivering high performance

make them ideal processor for miniaturised devices.

CPU comprises of a basic processing unit called a core. Cores work independently of each other

and they execute program instructions, as if the computer had several processors. The microprocessors

currently used in almost all personal computers are multi-core. A multi-core processor is an CPU

2.2. HARDWARE 9

Figure 2.2: Classification of microprocessor.

with two or more separate cores working together to achieve improved speeds and functionalities.

Due to their independent nature, cores need to communicate with each other through some medium

to produce final computation results. Based on the communication medium, different cores can be

coupled tightly or loosely. Cores are said to be tightly couple when they share a common cache. In

loosely coupled cores, the inter-core communication is achieved through implementation of message

passing or physically share-memory interface. A multi-core processors supports multiprocessing

without any additional requirements as multiple cores can work individually on different computation

and produce results faster.

In computing, clock rate typically refers to the frequency at which a processor can execute

instructions (Davidson, 1965). It is also the frequency at which processors generate pulses, which are

used to synchronise the operations of its components (Davidson, 1965). It is generally an indicator of

how fast a processor is. Its measured in Hertz (Hz). Higher clock rate means faster processors and

better computing times (Srinivasan et al., 2018). Clock rate can be increased or decreased, in certain

limits, by varying the energy provided to the processor. Overvolting is increasing the clock rate and

hence providing more energy for optimal performance. Undervolting is the opposite where the clock

rate is reduced, and energy provided is decreased. The need to increase or decrease clock rate is totally

the user’s decision and most processor manufacturers provide a safe limit in which their clock rates

can be tweaked without loosing performance. Most modern devices are tolerant of over-clocking or

under-clocking. Most of the processors will have a maximum or minimum “stable” speed where they

still operate correctly. If operating a processor outside these limits, the processor might completely fail

or produce incorrect results.

10 CHAPTER 2. BACKGROUND

2.2.2 Memory

Computer memory is defined as any physical device capable of storing information. Every computer

has two kinds of memory – RAM, which stores information temporarily and ROM, which stores

information permanently. In computation, RAM is often referred to as memory. For the purposes of

this study, memory terminology is used to refer to RAM memory of a computer. RAM is a super-fast

and temporary data storage space that computer needs to access right now. It plays a very important

role during computation as RAM is the memory where most of the synchronisation, output, inputs, etc.

resides.

There is a physical memory on each computer which is accessible by CPU to process. With the

introduction of multi-core computers, the memory was needed to be shared across different cores.

Each core can have its own space in memory of share a collective big space with other cores. The

latter is called a shared memory model of computing where many individual computing processes

communicate with each other using a shared memory. In this situation, the memory is physically

shared across different cores on a single computer.

In a distributed system, multiple computers with their own individual memory might implement a

Virtual Shared Memory (VSM) model for synchronisation between processors. Each node receives an

abstract shared memory which provides the connected processors with impression of being in a shared

memory environment. This is mainly achieved through a message passing interface which provides

the synchronisation across different processors. Memory allocation in such systems can be simulated

through number of ways. Shared memory can be simulated on distributed systems by implementing

message passing interface for synchronisation, where a distributed memory can be simulated on a

computer by restricting access of individual cores to a particular memory space.

Shared memory and Message passing models have been widely used for parallel programming

(Zargham, 1996). Shared memory model refers to programming on a multiprocessor where communi-

cation between processes is achieved through shared or global memory and message passing model

refers to programming in a multi-computer environment where communication is achieved through

some kind of message switching mechanism (Zargham, 1996).

Cache memory is a hardware or software component that stores commonly requested data. In a

computing terms, it might be a certain block of data which needs to be accessed multiple times during

computing. Cache memory is faster than RAM and is usually relatively smaller than RAM as larger

resource implies greater physical distances. In computing, data is constantly being read and written

and this can take a long time if the data store is slow. Cache is used in such situations to write results

of computation or reading a recently requested data by CPU faster. Cache request by CPU are faster

than any other data store and hence, the more requests it can serve from cache, the faster the system

performs.

2.2. HARDWARE 11

2.2.3 Cluster computing

Cluster computing refers to many computers connected to each other and performing like a single

entity. Clusters can also be defined as two or more computers that are networked together to provide

solutions to given problems. Clusters were introduced when the traditional methods of computing were

not enough to solve the modern-day technologies and advancements. Researching and developing

powerful multiprocessors is a very expensive task and as discussed in the previous sections the speed

of the processors cannot be increased any more due to inherent limitations of them. Clusters were

introduced as an alternative to powerful multiprocessors in which many moderately powerful computers

were combined to provide exceptional results. A cluster of computer joins computational powers of

individual computers to provide a combined computation power. Cluster computing offers solutions

to solve complicated problems by providing faster computational speed, and enhanced data integrity.

Cluster computing exploits the parallelism into the computing requirements and provides exceptional

results. Clusters can be developed with any type of architecture and the performance differs according

to the underlying processor chosen.

Clusters have been classified into a number of ways based on their features. Based on the proximity

of the cluster nodes, they are classified as multi-computer (computer nodes close to each other – in

the same room) and distributed systems (computer nodes far away from each other – different cities).

Inter-node communication in a cluster mainly depends on the bandwidth of the connecting medium.

Bandwidth is defined as the maximum data transfer rate of a network. For a given computation

needs, distributed systems with high bandwidth can be a better option that a multi-computer cluster

with slower bandwidth. To gain faster computing, physical distance can be considered a secondary

characteristic and more priority should be given to bandwidth of inter-node communication. The

bandwidth between nodes can be evaluated using ping pong benchmark (See Section 2.4.3).

An alternate high-level classification based on the unique functionality of the clusters have also

been documented (Yeo et al. 2006; Buytaert 2000):

• Fail-over Cluster: They consist of 2 or more network connected computers with a separate

heartbeat connection between the 2 hosts. They are monitored and as soon as a service on one

machine breaks down the other machines try to take over (Buytaert, 2000).

• Load-balancing clusters: When needed, the cluster checks which machine is the least busy and

then sends the request to that machine thus balancing the load among all the machines and not

just one machine (Buytaert, 2000).

• High Performance Computing Cluster: The machines are configured specially to produce

extreme performance that the user requires. In this, the processes are being parallelised and

routines that can be execute separately are distributed on different machines instead of having to

wait till they get done one after another (Buytaert, 2000).

Many clusters might have more than one feature of the other, but the expected basic functionality is

what leads to the development of the clusters. The computers are configured according to the need and

12 CHAPTER 2. BACKGROUND

the ideal situation would be creation of a cluster with perfect balance between balance, performance

and effectiveness.

2.2.4 Single Board computers

Single Board Computers (SBC) is a complete computer built on a single circuit board, providing

all the features of a traditional computer. Due to their miniaturised nature (Section 2.2.1), most

of the single board computers are developed on ARM processors. They perform reasonably well

when compared with the cost and power consumption (Kecskemeti et al., 2017; Schot, 2015). Also,

development in ARM processors have led to more and more advanced and more powerful single

board computers. SBCs were first introduced as an object of curiosity, but they are gaining more

technological importance in the present generation (Basford et al., 2020). In initial stages their features

did not compare anywhere near to the physical computers and hence were only used for educational

purposes but these past few years have been significant changes in SBC hardware capabilities (Basford

et al., 2020). This has led to SBC being seen as a potentially useful technology rather than just an

object of curiosity.

The advancements in SBC technology has led to around 20 times the performance as compared to

its predecessors in just 5 years (Basford et al., 2020). This directly translates to a massive improvement

in SBC clusters. Comparatively, an SBC will always have limitations as compared to the newer

computers and technologies (Basford et al., 2020) but use of many SBCs in clusters provide almost the

same or better performance in some cases while providing extra benefits in the same process. Table 2.1

lists some of widely used single board computers.

Single Board Computer Family CPU Memory

Raspberry Pi Zero ARM1176 Broadcom 2835 512 MB
Raspberry Pi Model A+ ARM1176 Broadcom 2835 256 MB
Raspberry Pi Model B ARM1176 Broadcom 2835 512 MB

Raspberry Pi Model B+ ARM1176 Broadcom 2835 512 MB
Beagleboard-xm Cortex A8 TI DM3730 512 512 MB

Beaglebone Black Cortex A8 TI AM3358/9 512 MB
Pandaboard ES Cortex A9 TI OMAP4460 1 GB

Raspberry Pi Model 2-B Cortex A7 Broadcom 2836 1 GB
ODROID-xU Cortex A7 Exynos 5 Octa 2 GB

Raspberry Pi Model 3-B Cortex A53 Broadcom 2837 1 GB
Dragonboard Cortex A53 Snapdragon 410 1 GB
Jetson TX-1 Cortex A57 Tegra X1 4 GB

Table 2.1: Comparison of widely used single board computers.
Derived from (Cloutier et al., 2016)

During the writing of this thesis two of the most researched and advanced single board computers

include the Raspberry Pi and the Odroid series. The latest board in the RPi series include the RPi 4B

(ARM Cortex-A72 quad core CPU, 8GB RAM, gigabit Ethernet, USB 3.0 and USB C for power)

while Odroid series include Odroid XU (ARM Cortex-A7 octa core CPU, 2GB RAM, USB 3.0). These

2.3. SOFTWARE 13

SBCs provide benefits that of laptops and computers while being small in size and energy efficient.

Many researches have been conducted including these two SBCs and when used in clusters they

provide competing performance to those of high-end computers (Section 2.4.3).

2.2.5 Summary

The section provided background related to the hardware aspect of computing. Basic understanding

of a computer architecture is briefly discussed. The processors and their evolution through times

provide a brief background in the development of computers. Different memory types and their effects

on computing are also discussed. Widely used models for parallel computing in clusters have been

documented and the section ends with a list and features of single board computers. The development

of single board computers and their significance in the field of computing have also been discussed.

2.3 Software

Effective cluster computing depends not only on hardware but also on the software. The software

needs to be interacting with the hardware in the most efficient way. If the software is incompatible

with the hardware, then there can be performance issues and crashes which can affect the overall

computation being carried out. A little change in the software on a cluster can provide huge difference

in the performance of the whole cluster and hence, a lot of improvements have been done to provide

the best and compatible software for a particular cluster architecture. Cluster computing requires

installation of supporting software such as the computing libraries for particular problem, message

passing interface for communication, etc. installed on each individual node to function properly and

effectively (Alghamdi and Alaghband, 2020).

2.3.1 Operating System

The operating system is the most important software on a computer that can affect the performance

and reliability of all the dependent software. Linux is the most commonly used OS on clusters as its

best known and most-used open source operating system. Linux is the software that sits underneath all

other software on a computer and facilitates the communication between a software and computer’s

hardware. Being an open source OS, Linux has been highly modified to suit particular needs. Ubuntu,

Fedora, Debian, Arch Linux, etc. are the most commonly used distributions of Linux.

2.3.2 Inter-node communication interface (MPI)

Cluster comprises of lots of nodes working together. These are individual computers which are

connected to each other through physical hardware. They have their own individual CPU’s and

memory blocks which do not interfere with each other and hence work independently. The individual

nodes/ processes communicate to each other using message passing interfaces (MPI). MPI is a

14 CHAPTER 2. BACKGROUND

standardised and portable message passing standard designed to function on a wide variety of parallel

computing architectures. There are many efficient and well tested implementation of MPI. Some of

them include MPICH and OpenMP supports programming in C, C++ and FORTRAN. Many libraries

extend the MPI implementation by binding them to the existing implementation such as MPICH and

OpenMP. MPI4Py is a binding for MPI in python while Rmpi is binding for MPI in R language. As

these are essentially just the bindings for existing implementation there is no performance hit to the

computation while using them

2.3.3 Storage Framework

Applications on a cluster must have a quick, dependable, concurrent and always available access

to storage framework. The storage demands can be met by having the exact same storage on each

individual node or bringing together a storage node (most of the time master node) that will be in

charge of providing storage framework to other nodes. As all the nodes are connected to each other,

Network File system (NFS) is the most commonly used protocol to access and make changes to the

storage file system. The master server hosts the NFS daemon process to make data available to clients

and each individual node requests access to data by mounting it at a particular location. NFS is not a

requirement and clusters can work effectively even without it.

2.3.4 Job Schedulers

As discussed in previous sections, Job schedulers and workload managers are used to easily and

effectively manage the task of execution of tasks and monitoring them. Job schedulers such as

Torque/maui, torque/moab and SLURM have been heavily used in many HPC clusters (Yoo et al.,

2003). Torque/maui has been neglected for few years and torque/moab has paid features to effectively

use it. SLURM has open model and is easy to use as all the configuration is done only in single file.

SLURM has modern design in its design and implementations and hence is preferred among all other

job schedulers and workload managers (Yoo et al., 2003). Other Job schedulers include Portable Batch

System (PBS) and Sun Grid Engine (SGE).

Job Scheduler is a resource management system which performs important functions like schedul-

ing user jobs, monitoring machine and job status, launching user applications, and managing machine

configuration (Yoo et al., 2003). Scheduling can be achieved using the help of a workload manager

such as SLURM. Slurm is an open source, fault tolerant and highly scalable cluster management and

job scheduling system for Linux clusters (Yoo et al., 2003). Slurm works on the existing kernel and

requires no modifications for its operation and is self-contained (Iserte et al., 2014). As a job scheduler,

Slurm performs three main functions: Allocating access to resources (compute nodes) to users for

performing work, providing framework for starting, executing and monitoring a parallel work and

managing a queue of pending work (Yoo et al., 2003). Slurm has been successfully used in HPC (high

performance computing) for job scheduling and process queuing (Cloutier et al., 2016).

2.3. SOFTWARE 15

2.3.5 Computing Libraries

All of the previous software’s are used to setup the cluster and the computing processes (Alghamdi and

Alaghband, 2020). Apart from these, individual libraries are required which are dependent on the type

of computing the cluster is doing. Computing libraries in the domain of vector and matrix operations

include the Basic Linear Algebra Sub-Programs (BLAS), Automatically tuned Linear Algebra Software

(ATLAS), OpenBLAS and Linear Algebra PACKage (LA-PACK) is heavily used by High performance

Lin-pack (HPL) benchmark to calculate the efficiency of clusters (Cloutier et al., 2016; Papakyriakou

et al., 2018; Balakrishnan, 2012). Intel developed their own library called Math kernel Library (MKL)

which is heavily optimised to work alongside Intel processors to provide the best possible performance

and efficiency. In domain of image processing and graphic processing Open-CL framework is used to

execute programs on GPUs and other digital signal processors (Cloutier et al., 2016). Other commonly

used libraries for computing are SciPy, NumPy and Sklearn.

2.3.6 Parallel Algorithms

For a long time, sequential algorithms are used for computation purposes, in which operations must be

executed step by step (Zargham 1996). Introduction of multiprocessors and multi-computer meant

that computation can be done relatively faster due to the inherited parallelism. Better and improved

parallel algorithms were introduced over time by researchers in order to gain maximum performance

from computing platforms (Chai and Bose, 1993). A parallel algorithm for a parallel computer can be

broadly defined as a set of processes that may be executed simultaneously and may communicate with

each other in order to solve a given problem (Kung 1980). A process is defined as a part of program

that is execute on a processor.

Designing a parallel algorithm comprises of lots of steps and considerations. An effective parallel

algorithm needs to fulfil few characteristics and conditions effectively to be able to be used in parallel

computing. Chai and Bose (1993) presents few of the important conditions and characteristics:

• The algorithm needs to be able to use the full CPU resources.

• The algorithm should not waste any CPU cycle during processing.

• There needs to be effective communication between individual processes that results in overall

better performance of the algorithm.

• The algorithm needs to be scalable. It should work on any number of processors.

• The algorithm needs to balance the load evenly on individual processes.

This list is not exhaustive and there are many other conditions that need to be fulfilled by the

algorithm to be considered effective. There are many parallel algorithms designed for the same

functionality and each of them focus on an individual characteristic. Some algorithms focus on

improving the efficiency while some focus on reducing the communication overheads. Algorithms are

constantly under improvement as there is always a chance to make it perform faster and better.

16 CHAPTER 2. BACKGROUND

Inhibitors of parallelism

Achieving true parallelism in any computing situation is hard to achieve as it depends on many factors

such as the architecture of computer, cost of communication between the processes and even the way

in which the algorithm is written. The architecture of the computer on which the algorithm is executed

affects the performance of it as a particular algorithm may be efficient on one architecture while being

inefficient on other and poorly written algorithms may lead to communication time being greater

than actual computation time The designer needs to consider all these inhibitors in order to design an

efficient parallel algorithm.

• Data Dependence: All the dependencies of an algorithm need to be identified and properly

managed so that they don’t interfere with each other. A data dependency occurs when multiple

instructions use the same location in storage for different tasks and flow dependency occurs

when an instruction depends on the output of the previous instruction. These dependencies need

to be carefully removed and if not possible, the algorithm is considered to be non-parallelizable.

• Overheads: Communication overhead between the parallel processes is the most important

consideration while designing a parallel algorithm. The cost for communication in a parallel

algorithm affects the performance and the efficiency of the algorithm. For some algorithms,

communication time may be greater than actual computation time. This may lead to degraded

overall performance. Communication includes dividing the tasks, sending the tasks to nodes,

retrieving the output of nodes and other inter communication of data between the processors or

nodes.

• Load Balancing: The main objective of load balancing is to engage all the cores so that the

tasks are completed in minimum elapsed time. This often takes care of two key overheads:

inter-process communication and idle CPU processes. Load balancing refers to distribution of

equal amount of work to all the processors or nodes so that the processing units are kept busy

with the lease interference from anything else.

• Hardware Dependence: The hardware on which the algorithm needs to be executed should also

be considered while developing an algorithm. For example, an algorithm which requires a GPU

to execute cannot be executed on system that has no GPU or does not support that execution.

This is an important consideration, since the same algorithm may be very efficient during the

designing process but very inefficient on another architecture later on.

Evaluating parallel algorithms

Once an algorithm has been designed, the next step is to evaluate the algorithm. An algorithm can

be evaluated in a number of ways and each of the evaluations explains more about the algorithm and

proves to be a basis for further improvement. Some of the evaluation methods for an algorithm include

its run-time, accuracy, scalability, ease of use and cross compatibility.

2.3. SOFTWARE 17

execute time is one of the most common measurement to evaluate the performance or efficiency

of an algorithm. It is also referred to as elapsed time or completion time. It is the time taken by the

algorithm to solve a problem. More specifically, it is the elapsed time between the start of the first

process and the termination of the last process.

The accuracy of the result can change due to many constraints and the solution to a given problem

should be same by any algorithm. If the result is not as accurate or correct as the one obtained from

some other algorithm, then there might be errors in further computing or analysis.

A parallel algorithm is designed assuming that it will be executed parallelly on a number of

computers or processors. The algorithm needs to be scalable and it should be able to work at the

same efficiency on 2 computers as well as thousands of computers. The number of processors that the

algorithm will be executed on is not known and hence this is an important measurement of robustness

of an algorithm. It might also happen that an algorithm executes efficiently on few processors but

slows down on large number of processors. Evaluating and considering all this will lead the algorithm

to be more scalable and robust.

This is not a preferred evaluation method, but it is good practise for the algorithm to be easily

understandable by anyone who did not design it. Its implementation needs to be easy and the instruction

clear on how to use it. Harder to understand algorithm can lead to its wrong implementation and

incorrect results.

An algorithm needs to be able to execute on any operating system with very limited number

of pre-requirements. An algorithm which supports only a single system or needs a very specific

requirements cannot be collaborated by others easily.

Popular algorithms in parallel computing

There are vast number of algorithms and with rapidly growing technologies, it’s nearly impossible to

be exhaustive while listing them. Book on parallel algorithms by Alan Gibbons and Wojciech Rytter

try to explain and list the algorithms in details (Gibbons and Rytter, 1989). Most of the low-level

parallel algorithms can be highly classified into following seven categories. Newer algorithms can

have more than one features (Hillis and Steele Jr, 1986; Gibbons and Rytter, 1989). A non-exhaustive

high-level classification of parallel algorithms are provided:

• Recursive algorithms (Strassen algorithm, tree traversals, quicksort).

• Dynamic programming algorithm (Insertion Sort).

• Backtracking algorithm (Sudoku solving).

• Divide and conquer algorithm (Merge sort and Quicksort).

• Greedy algorithm (knapsack problem, Huffman compression trees, task scheduling).

• Brute Force algorithm (Travelling Salesman problem).

• Randomized algorithm (Randomised quicksort, Monte Carlo algorithm).

18 CHAPTER 2. BACKGROUND

2.3.7 Summary

The section provided background related to the software aspect of computing. The section starts

with the software requirements for parallel computing. Each of the requirements are explained while

providing a brief discussion of their effect on the computation performance. Just like hardware,

software plays a very important role in computing. Computing libraries, Operating systems and

inter-node communication libraries are few of the basics requirements for parallel computing. Parallel

algorithms, their inhibitors and the methods of evaluating them are also described in this section. The

section concludes with a list of the most popular algorithms which are used in most parallel computing

situations.

2.4 Related Work

2.4.1 Experimental Cluster Computing

Clusters were mainly built to gain high performance computation. When the focus shifted to find the

balance between cost and performance, many ideas were put forward by researchers theoretically to

achieve perfect balance. Cluster performance depends on a lot of factors, and there is no ideal way to

develop clusters. Lot of researchers developed their own novel clusters with specific configurations to

tackle the problems that they want to solve. A lot of experiments were conducted on clusters to find

the optimal solution for the problems.

Apache Hadoop infrastructure is very expensive and requires a lot of energy, real estate, cooling,

etc. Big data issues like storing, retrieving and handling have been addressed and solved by a number

of experiments involving SBC clusters. SBC clusters have been concluded as an effective alternative

for mobile Hadoop clusters and robust computing performances (Qureshi and Koubaa, 2017; Schot,

2015; Srinivasan et al., 2018). Comparative study of performances of clusters with different numbers

of nodes showed that 10 nodes SBC cluster was more superior in performance to a single computer

and 5 nodes SBC cluster by 20% and 80% respectively.

Novel cluster architectures were introduced to tackle the problems of Edge computing and Big

Data (Basford et al., 2020; Schot, 2015). PiStack focuses on power efficiency and thermal output

while providing an optimal performance in edge computing conditions. It implements some of novel

ideas to reduce cluttering by powering nodes through the cluster case and saving power by introducing

heartbeat functionalities for each node (Basford et al., 2020). Similar to PiStack, novel alternatives

for 1U rack in big data centres involving stacking RPi’s to achieve maximum accessibility and easier

replacement (Schot, 2015). They also prove that SBC clusters can be a feasible approach to solve Big

Data issues of storing and retrieving data.

Using SBC clusters to perform cloud simulations and provide virtualisation of resources have

been studied (Kecskemeti et al., 2017; Tso et al., 2013). Cloud infrastructure has been simulated by

iCanCloud (Nunez et al., 2011) and CloudSim (Calheiros et al., 2011) in the past. Same functionality

has been achieved using SBC clusters in Glasgow Raspberry PiCloud (Tso et al., 2013). PiCloud

2.4. RELATED WORK 19

simulates every layer of the cloud infrastructure, ranging from resource virtualisation to network

behaviour (Tso et al., 2013).

Image processing is one of the applications which makes use of in-built parallelism during pro-

cessing. Computation time is a very important factor during image processing and clusters have

been proved to reduce the computation time significantly. Algorithms in OpenCV libraries exploit

parallelism to process each image faster and in real time. SBC clusters executing algorithm which

use OpenCV library significantly outperformed single computers in frame processing of a live stream

video (Pomaska, 2019). Accuracy of SBC cluster in image learning was studied by using the Scikit

Image library and by executing two parallel algorithms – Watershed and Edge detection on number

of images (Markovic et al., 2018). OpenMP is an application programming interface that supports

shared-memory multiprocessing. It has been used in clusters to perform image processing faster and to

provide comparative study of different image processing libraries (Patel et al., 2015; Rahmat et al.,

2019).

2.4.2 Energy Aware Cluster Computing

Clusters have been used in a lot of disciplines which requires high computation power. Along with

maximum performance, there has been a need to design a cluster which stays inside the power

budget (Cloutier et al., 2016). Supercomputers have been consuming vast amounts of electrical power

and produce so much heat that large cooling facilities needed to be constructed to ensure proper

performance. In order to motivate this approach, a Green500 list was generated which consists of

energy efficient supercomputers.

A lot of studies proved that single board computers (SBC) are more energy efficient than daily

use computers and this paved a pathway towards studies about energy consumption in different

SBC clusters (Saffran et al., 2016). Terms like power/ energy consumption (GFLOPS/W) and value

for money (GFLOPS/$) are used frequently to depict the effectiveness of the cluster in terms of

performance and cost.

Apache Hadoop framework is commonly used for analysis of data intensive operations such as Big

Data analysis where large volumes of data need to be analysed effectively (Qureshi and Koubaa, 2017).

Hadoop’s Map/Reduce model has been used as a benchmarking tool for comparing performance

and energy consumption of various architectures (Feller et al., 2015). Comparative study of energy

consumption in big Hadoop clusters show that SBC clusters can be an effective alternative to big data

centres (Conejero et al., 2016; Krish et al., 2014; Qureshi and Koubaa, 2017; Tiwari et al., 2016).

Data mining algorithms are essential tools to extract information from the increasing number of

large data-sets, also called Big Data (Saffran et al., 2016). They are high power and performance

demanding algorithms. Executing two of these algorithms (Apriori and K-means) on SBC clusters and

daily-use computer showed that SBC clusters out-performed while proving to be the most cost effective

(Aroca and Gonçalves, 2012; Cloutier et al., 2016; d’Amore et al., 2015; Saffran et al., 2016). They

compare the results from SBC clusters with that of a high-performance computing (HPC) platform and

20 CHAPTER 2. BACKGROUND

concluded that even though SBC cluster performs lower than HPC platform, they are very effective at

energy consumption and value for money.

Cloud computing is an example of edge computing in which a large number of computations are

performed remotely on the data centres through some form of message passing (Qureshi and Koubaa,

2017). Edge computing means having compute resources near to the data-sources (Basford et al.,

2020). In the modern world there is less and less space available for installation of large computing

hardware. Hence, more and more data centres and installations are done in remote locations. There are

very limited power resources in remote locations and hence power efficiency in terms of GFLOPS/W

is an important consideration (Basford et al., 2020). SBC clusters for cloud and edge computing have

been compared to find the best architecture to provide maximum performance in terms of low network

latency, communication overhead, low power and energy consumption (Basford et al., 2020; Qureshi

and Koubaa, 2017).

2.4.3 Related work in benchmarking and evaluating clusters

Evaluating and benchmarking a cluster is very important as it lets the user know how much performance

the cluster can provide and how to make it better. There are many benchmarking libraries and

frameworks developed to test different aspects of a cluster. Following lists few of the benchmarking

frameworks used to evaluate different functionality of a cluster:

• Performance and speed:

CoreMark: Benchmarks the number of iterations per second. It calculates computation on

matrixes and lists such as sorting, searching, reversing, etc.

HPL: High performance Linpack benchmarks number of aspects in a cluster. It performs Algebra

and matrix computation and calculates the maximum speed and performance of the cluster.

• Memory bandwidth:

STREAM: Measures sustainable memory bandwidth in MB/s and vector kernels such as Copy,

Scale, Add and Triad.

• Accuracy of results:

Linpack: Calculates average rolled and unrolled performance of a cluster by solving NxN system

of linear equations and using double precision floating points.

HPL: HPL determines double precision floating point performance for a given computation.

• Network Speed:

PingPong: Tests the latency and bandwidth of network communication between two nodes. It

transmits and receives a message of certain size and measure the time taken by it to come back.

Many researchers have bench-marked and documented the performance of different computers.

Figure 2.2 provides an extract of results obtained by executing different benchmarks on computers.

2.5. OPEN ISSUES/ GAPS 21

The energy consumption of each is also documented in the similar table. All of the benchmarks were

done using OpenBLAS libraries.

Name GFLOPS/W Performance
(GFLOPS)

Average Power
(Watt) Processor Type RAM

(GB)
1 RPi 4B 64-bit 2.02 13.5 6.6 Cortex A72 4
2 Haswell desktop 1.56 145 92. hsw i7-4770 4
3 RPi 3B+ 0.73 5.3 7.3 Cortex A53 1
4 Dragonboard 0.450 2.10 4.7 Cortex A53 1
5 RPi 2 0.432 1.47 3.4 Cortex A7 1
6 fam16h-a8-jaguar 0.354 14.1 39.7 A8-6410 4
7 RPi zero 0.236 0.319 1.3 BCM2835 0.5
8 RPi B+ 0.118 0.213 1.8 BCM2835 0.5
9 Beaglebone-black 0.026 0.068 2.6 Cortex A8 0.5

10 Sparc 0.003 0.456 140.7 Ultra 0.5

Table 2.2: HPL benchmark results on different computers.
Derived from (Cloutier et al., 2016)

2.5 Open Issues/ Gaps

Parallel and Cluster computing has been extensively studied and implemented in a number of different

domains to solve particular problems. They have been constantly improved on and updated keeping in

mind the present computing needs. Algorithms on clusters have always been a hot topic in research as

there are innumerable factors which can improve the process of computing and modern-day problems

demands more and more powerful algorithms capable of high-performance computing.

During the survey of literature in the field of parallel computing it was noted that most of the

algorithms designed or evaluated follows a constant pattern – to be the most efficient or the fastest. Also,

that cluster designing, or cluster computing have been traditionally evaluated through its performance

and very few frameworks are present which provide overall evaluation and analysis of clusters.

Speed and performance of an algorithm or a cluster is undoubtedly very important in computing

but in modern times, they are not the only characteristics that needs focusing on. Major issue affecting

the modern computing systems include – high energy consumption, major cooling and maintenance

infrastructure resulting in higher costs, high real estate cost. Related research has already been done

in the field of reducing the overall energy consumed during big data analysis (Srinivasan 2018) and

gaining maximum performance from limited energy resources in edge computing. (Philip J. Basford

2018).

Non-exhaustive list of all the issues and concerns raised during the survey of literature in the field

of parallel and cluster computing is given below:

• All the algorithms are used, optimised and evaluated considering its performance and speeds.

22 CHAPTER 2. BACKGROUND

• Very few algorithms developed till now focus on the energy aspect of computation. They don’t

factor in the value or the cost of performing the computation.

• There is no definite framework to evaluate the algorithms based on its energy consumption. The

existing framework evaluates their performance and efficiency which leads to improvement in the

same. Development of a framework to evaluate the energy consumption along with performance

will lead to development of more energy efficient algorithm with balance between performance

and cost.

• Sometimes the algorithms are designed just to access the inherent parallelism in the computation.

They don’t focus on the load balancing and hence their algorithm is not as efficient as it’s

supposed to be.

• No framework to evaluate, analyse and benchmark clusters with different configuration. All the

benchmarks test clusters with a single configuration.

• No framework to evaluate the cost/ performance analysis of cluster. Calculating performance

per dollar spent can help in understanding the energy aspect and consumption for a computation.

• Energy consumption of an SBC cluster has not been researched in depth and there are gaps in

literature in relations between performance and power or resources used and power consumption.

2.6 Summary

This chapter has introduced the field of parallel and cluster computing. Section 2.1 discussed the

methodology of identifying and reviewing relevant literature. This is a general section and has been

done with sole purpose of explaining the steps undertaken to reach this point and writing the literature

review. As the focus of this thesis is that of a generic framework for evaluating parallel algorithms on

different hardware architectures, it is important to know the factors that can affect the performance

of a computation (hardware and software aspects). To do this Section 2.2 and 2.3 provided a brief

background in the field of cluster computing from hardware and software point of view respectively.

They both argue that there are innumerable factors that can affect the final performance of a cluster.

This can range from a line of code in algorithm to the configuration of the cluster.

In Section 2.4, related work undertaken by other researchers have been included. The introduction

of parallel computing and energy efficient computers allowed a wide range of research to be conducted

in this field. The section documented the previous work done in experimental and energy aware cluster

computing. Existing frameworks used to evaluate, and benchmark clusters have also been listed.

Comparative evaluation of HPL benchmark test on a number of computers have been included.

The reviews and analysis in this chapter lay important ground work for forthcoming chapters.

Firstly, by having reviewed the effects of hardware and software components on the performance, a

framework that will cover all these parameters and evaluate accordingly can be developed. Secondly,

reviewing and analysing the work of past researchers allows a definite set of requirements to be

2.6. SUMMARY 23

outlined for addressing the research question and open gaps. The literature also allows a comprehensive

evaluation of our proposed system. Finally, the literature provides us with the basic understanding of

designing, implementing and evaluating the proposed system for a particular architecture system.

Chapter 3

METHODOLOGY

As discussed in Chapter 1, the approach chosen to evaluate different cluster architectures is by creating

a standardised framework which can help users to evaluate the performance of an algorithm on different

cluster specification while providing a cost-performance and energy-performance analysis at the same

time. As discussed in the previous chapter, there is little related work in the field of energy aware

cluster computing. However, none of them have the aim of developing a framework with the intentions

of evaluating performance of a cluster in relation to its energy consumption. In addition, none of them

aim to support multiple cluster configurations. They evaluate the cluster setup by executing a single

algorithm which do not produce a comparative analysis to the user on the cluster performance.

The purpose of this chapter is to provide enough information regarding the approach undertaken

while developing the framework, in order to be able to replicate it in future. The chapter explains the

underlying concepts used while conducting the experiments without going too much in detail about

the technology used. The specific technologies and approach used for this thesis will be discussed

in Chapter 5. This chapter investigates the principals while designing and conducting an experiment.

The chapter starts with a broader approach taken towards the experiment and narrows it down to the

specifics in the experiment.

Firstly, Section 3.1 discusses the research questions identified from the open gaps in Chapter 2.

Section 3.2 provides an introduction to the overall approach towards the experiments conducted. It

provides an argument why the approach was used and how it relates to other approaches in similar

experiments. Section 3.3 discusses the data collection methods and provides a detailed analysis of why

the method was better than other methods used in previous researches. Then Section 3.4 elaborates on

how the data collected was validates and deemed reliable whereas Section 3.5 describes the strategy

used while analysing the data which is collected and validated. This section also lists other ways in

which researchers have analysed data in past in similar experimental setups. Section 3.6 discusses a list

of requirements for a generic framework for evaluating parallel algorithms. These requirements provide

a base for the design and implementation of the framework and later focus for the evaluation. Finally,

Section 3.7 summarises the chapter while emphasising on the relation between the methodology and

the aims of this thesis.
24

3.1. RESEARCH QUESTIONS 25

3.1 Research questions

This thesis aims to propose a method of evaluating parallel algorithms on different cluster configurations

and to provide the researchers with ability to assess their computation needs with respect to their

energy needs. The proposed idea is the introduction of a framework, which can be used by researchers

to help choose a cluster configuration for their particular needs. Extensive literature review led to the

following set of research questions to be developed. The goal of the work presented in this thesis is to

explore these research questions, with possibility of future research in the similar field.

• How do different parallel algorithms executing on different SBC cluster architectures affect the

overall performance of the system?

• What is the best architecture design and specs of SBC clusters for a researcher that want to test

their algorithm effectively?

• How does different cluster configuration affect the energy consumption during computation?

• How do researchers choose a particular cluster for their computation needs?

• How to achieve a platform independent framework with consistent results?

3.2 Paradigm

For a long time, quantitative and qualitative paradigms of research have been the two different ways

of solving a problem (Patton, 2014). A quantitative study to solve a problem is based on rigorous

and controlled techniques whereas qualitative studies are based on social realities. Both studies have

different way to look at and solve a research problem. The methodology adopted by quantitative

research is mostly experimental with focus on hypothesis testing (Patton, 2014). It quantifies variables

and solves problems using numeric assessment. In qualitative study, it is believed that the constructed

reality is based on experiences, circumstances and situations. There is no single correct answer in

qualitative study whereas a quantitative study produces a single definite result.

For the purposes of this study, both quantitative and qualitative approaches were chosen as the

research questions partly relate to the functionalities of our framework and partly on the experimental

data collected and analysed during the experiments conducted. The answers to our research questions

will be provided in two ways: one through evaluating the qualitative aspects of our framework and

second through quantitative data of experiments being executed on our cluster. Related work in similar

fields have chosen similar approaches have been found to be the most practical ones (Cloutier et al.,

2016; Basford et al., 2020; Qureshi and Koubaa, 2017; Saffran et al., 2016). This approach was

chosen as experiments involving data related to energy consumption, performance, cost, etc. cannot be

analysed with a qualitative approach whereas verifying that the framework follows the requirements

and answers the research questions cannot be analysed using quantitative approach.

26 CHAPTER 3. METHODOLOGY

3.3 Data Collection

Data collection methods in a qualitative approach are mainly through observations and action research.

Quantitative data can be collected in a number of ways – through experiments, controlled observations,

surveys, etc. The method by which you collect the data can impact the way you analyse the data.

Quantitative data requires a large population of data-sets to be considered useful in drawing definite

conclusions whereas qualitative data depends on a finite set of criteria’s to be considered (Patton,

2014). Data collection can be primary (collect data generated by yourself) or secondary (use data from

different sources).

For the purpose of this study, the data is primarily collected through experimental results. The data

is stored and used in analysis which will be used to produce conclusions and provide a base for future

work. The sampling size depend on the type of data collected. Sampling size can also be affected by

the physical limitations of the hardware or software. Some hardware might not support data generation

for a particular sample size whereas some software may crash if the sampling rate is too high. The

errors in the collected data have to be analysed according to the specifications of the instrument used.

The data is collected and stored in database for future use. Similar methods have been followed by past

studies (Cloutier et al., 2016; Basford et al., 2020; Qureshi and Koubaa, 2017; Saffran et al., 2016).

3.4 Validity and Reliability of Data

The quality of research is evaluated by the reliability and validity of the results. Reliability is about

the consistency of experiment whereas validity is about the accuracy of the experiment. Especially in

quantitative research, it is important to consider the reliability and validity of the experiments while

creating the research design, planning methods, writing of results and concluding the experiments. It

is important to explain the validity and reliability of data in an experiment so that it provides a base of

analysis for future experiments repeated under the same conditions by other researchers.

For the purpose of this study, the quantitative data collected was tested against multiple iterations

to validate the results. The data was collected from industry graded instruments and computers, which

meant few to no human errors. Multiple iterations of the same experiment were conducted to check

if the data collection methods were valid and reliable. The instruments were tested as well under

different conditions and they proved to be a reliable source to generate data for different conditions

such as different sampling rates, duration and different physical setups.

3.5 Data Analysis Strategy

Systematically applying statistical and/or logical techniques to describe, recap or evaluate data is called

data analysis. Data analysis is required where some definite conclusions are to be derived from a large

set of data. While analysing data, many factors such as integrity, reliability, validity, data recording

methods, issues, etc. need to be considered.

3.6. REQUIREMENTS 27

For qualitative approaches, data is analysed towards a set criterion and the final aim is to achieve

all the initial requirements for the project. For experimental setups, data is usually analysed at the end

of data collection. The data is collected as a whole during the experiments and then analysed by using

the statistical or logical methods. For our study, the data was stored into a database and analysed only

after the end of experiments. The analysis of data, both quantitative and qualitative, proved to a base

for creating the framework. It is important to wait for the experiment to end as many factors affecting

the data can be inferred only after analysing the whole data-set (Diwedi and Sharma, 2018; Rahmat

et al., 2019)

3.6 Requirements

Chapter 1 showcases the motivation behind the research while arguing that there is lack for a generic

framework for evaluation of algorithms on different cluster configurations. The following requirements

for the proposed system have been derived from the analysis of Chapter 2.

R1 The proposed system shall help researchers in deciding the best optimal performance for their

energy constraints.

The system helps the user in executing their algorithms on different cluster configuration and

provide data in easily accessible format to be able to help researchers in analyse the data and

reach conclusions.

R2 The proposed system shall support the identification of bottlenecks for a given computation for

a cluster configuration.

The system should be able to identify the limitations or the issues in its computation. The system

shall be able to identify them for the computation it is performing, or it shall help users in

identifying them. This requirement is hard to implement as there might be innumerable things

that might affect the performance of an algorithm.

R3 The proposed system will allow the specification of a range of repeated and repeatable experi-

ments which varies algorithm parameters and cluster configurations.

There are many combinations of algorithms, their parameters and cluster configuration. Providing

comparative analysis of all the variable aspects of a computing is beyond the scope of this

research. Some of the variables affecting the computation process are discussed in this thesis.

The proposed system should allow re-run of experiments for these algorithms with different

parameters on different cluster configurations. This will allow the user to check the data and

compare it against different data sets. This is very helpful in predicting results when the relation

between data sets is found by analysis.

R4 The proposed system shall automatically configure the target cluster for the computation needs

as defined in the experiment configuration.

28 CHAPTER 3. METHODOLOGY

The system needs to be able to reduce the manual work of configuring the cluster for computation.

Most of the modern cluster management systems like Kubernetes and workload managers like

SLURM uses configuration file to configure the clusters and get them ready for computing. Most

of these configuration files are complex with a number of variables which are, most of the time,

unnecessary for a given computation and overwhelming (Suresh et al., 2019). Kubernetes have

implemented Dynamic Kubelet configuration which achieves this goal to a certain extent, but

it restarts the nodes and uses the new configuration which is not a preferred way to do it (Pahl

et al., 2016). SLURM also does not have any known way to make the changes to the nodes

once the slurmctld daemon starts on the cluster (Yoo et al., 2003). The proposed system should

be executing the required algorithms on the cluster configuration as requested by the user in a

single configuration file. This feature is important as the using a single and simple configuration

allows users to provide a concise instruction to the system and allows easier debugging in case

of errors.

R5 The proposed system shall automatically execute different algorithms on different cluster config-

urations.

The system allows evaluation of parallel algorithms on different cluster configurations while

reducing the manual work done in execution of the algorithms, configuring the cluster, collecting

data from experiments, and visualising them. The proposed system needs to be able to do all this

automatically as per the user needs as specified in the configuration file. The system should be

able to configure the cluster and algorithms dynamically without restarting the node or services

on the nodes. This is very useful in high performance computing where each node plays and

important role and can affect the performance drastically.

R6 The proposed system shall support multiple algorithms from different languages.

The proposed system will form a framework for future developments and improvements. A

framework is defined as a platform for developing software and it provides a foundation on which

software developers can build their own software depending on their specific needs (Scacchi,

2002). Hence, it is very important for a software framework to be as generalised as possible

and support a wide range of modifications and support (Scacchi, 2002). The proposed system

will be evaluated against different algorithms and hence, it should be able to support multiple

programming languages or provide an easy way to support them for future use.

R7 The proposed system shall provide a comparative output (within suitable time) of energy

consumption for different cluster configurations and algorithms.

The requirement can be broken down into three different aspects. First – being able to provide a

comparative output. The system shall provide a wide range of computing output and different

aspects like energy consumed by each node or by cluster during computation, the run-time of

algorithm, run-time of the computing part of algorithm etc. This will help the user in better

understanding their algorithm and how it is related to the energy consumed and performance

3.7. SUMMARY 29

of the cluster. Second – within suitable time. Large computation may take longer time and

users might not have that long for them to be able to understand the cost-performance of their

cluster. The system should be able to provide consistent results within short amount of time

which can be used to predict results for larger computations. Third – Energy consumption. The

system mainly focuses on energy consumption of a particular computation and hence this is

an important aspect. The system should be able to monitor and log energy consumption of the

cluster and use that data to provide results to user.

R8 The proposed system shall provide a performance-energy (FLOPS/W) analysis of a different

cluster configurations.

The research conducted is aiming to bring about awareness on the energy consumption of cluster

computing. The system developed as a result should be able to do the same. The system

should be working towards helping a user understand the energy aspects of their computing

and make better decisions regarding their computing needs based on energy. To achieve this,

cost-performance (FLOPS/$) and performance-energy (FLOPS/W) analysis of their computation

is very important. The analysis should also be presented in a easily accessible format to allow

easy discussion and portability of data.

R9 The proposed system shall be able to export the experiment data for further analysis.

Every framework should be able to be compatible with other software’s for analysis or easy

portability of data. To achieve this, the system shall be able to export the data in a universally

compatible format so that the user can use the data to easily analyse the data or work on it

through some analysis software. The exporting of data can also be facilitated by implementing a

graph functionality which will further help analyse the data easier.

R10 The proposed system shall be compatible across different processor architectures.

Compatibility is the main requirement of any framework. It needs to be cross compatible with

most of the available platforms. It is not a compulsory requirement but it is better to develop a

software framework in language which has a wide range of supported platforms (Scacchi, 2002).

This assures the wide usability of the software and multiple improvements can be done to make

the software better. Also, it is hard to replicate or confirm results if the framework is restricted

to a particular platform.

3.7 Summary

This chapter has presented the methodological approach undertaken during the progress of this thesis.

It provides arguments as to why the particular approaches were decided and how they relate to previous

studies in the similar field. The chapter starts from a broader approach towards the study to more

specific methods for individual steps in the experiments. Related work in similar fields and their

approaches have been studied and concluded that the methodological approach undertaken for the

30 CHAPTER 3. METHODOLOGY

work presented in this thesis needs to be both - qualitative and quantitative. Both approaches and how

they can be achieved are explained in detail with references to similar work done by other researchers.

Chapter 4

DESIGN

Chapter 2 presented the current state of the art in parallel and cluster computing and argued that the

lack of a generic framework for evaluation of parallel algorithms on different cluster configuration

was harming the field of parallel computing both in terms of energy efficiency and performance.

It also explored the field of benchmarking and evaluation of cluster computing and showed that

the current evaluation frameworks were inadequate for parallel computing in terms of usability,

energy consumption analysis, run-time reconfiguration and ability to tweak independent variables or

parameters in computing. The conclusion of the chapter was that the development of a framework for

evaluation of parallel algorithms which addresses these shortcomings was desirable.

Chapter 3 then discussed the methodological approach adopted while undertaking this research. It

outlines the methods used during each step of the research and argues why these methods were decided

and links the chosen methods to research in the similar field by other researchers.

This chapter presents the generic high level design of “Framework for Evaluation of Parallel

Algorithms on Clusters” - FEPAC, a lightweight and flexible framework for evaluation of parallel

algorithms on different cluster configuration. The design follows and aims to meet all the user

requirements outlined in Section 3.6. The design presented in this chapter allows FEPAC to be a

platform independent framework with minimal installation required for its setup and working.

In addition to these core features, the design also supports collection of the experiment data

including the energy consumption (both the cluster and individual nodes), run time and algorithm

output. It also provides an option to export data so that it can be used as a backup or in further analysis

of the experiments. The main aim of this chapter is to make the reader understand how the system

achieves the aims and goals of this thesis and enable them to develop their own implementations of

system with the help of a generic design.

The remainder of this chapter is as follows. Section 4.1 provides in detailed information on the

design process of the computing cluster.The generic design generated for the setup and assembling

of the hardware is described here. Section 4.2 explains the design process of the framework. This

section provides the general and generic idea for the system that needs to be implemented to be order

to full-fill the aims of this thesis. Section 4.3 provides the summary of the chapter and links it to
31

32 CHAPTER 4. DESIGN

Chapter 5.

4.1 Cluster

The first step in designing a computing system is the setup of the hardware. For the purposes of this

study, we setup our own cluster using individual hardware. As discussed in Chapter 2, there are few

basic installations needed to get the computing system up and running. These include the individual

computing nodes (Processors - Section 2.2.1), operating system on them (OS - Section 2.3.1), inter

node communication medium (Hardware - Section 2.2) and the software which facilitates the inter-

node communication (MPI - Section 2.3.2). This section provides information on the design process

used while setting up of the cluster for computing.

Based on the requirements and past designs of other researchers, cluster setup as shown in Figure 4.1

was chosen to be implemented for cluster computing.

Figure 4.1: Proposed Design for the Cluster hardware

Individual nodes

Cluster computing system comprises of a number of inter-connected computing platforms. Sec-

tion 2.2.3 describes the many models used for cluster computing. The master-slave model used in our

design includes asymmetric communication where one device (master) controls one or more other

4.2. FRAMEWORK 33

devices (slaves) and acts as a communication hub. Each node has its own operating system, memory

to compute, storage systems and individual power sources. The master harnesses the computing power

of individual nodes to perform computation faster.

Inter-node communication

Inter-node communication can be achieved wired or wireless depending on the type of cluster to be

developed (See 2.2.3). Note that, in the design, inter-node communication is achieved using cables.

This can also be achieved using wireless connectivity but using wired connection provides many

benefits such as speed, security, reliability and efficiency. Traditionally, most of the inter computer

connections are done using Ethernet cables. They are used because of their high speed (up to 10Gbps),

less prone to hacker attacks, no environmental interruptions and very low amount of power.

4.2 Framework

In the previous section we described the design of developing and setting up the hardware components

for computing purposes. In this section we will describe the design process used to develop the

framework which will be used to answer the research questions described in 2.5. Based on the

requirements outlined in Section 3.6, the functionalities of the framework can be identified and

implemented accordingly to full-fill the requirements completely. The functionalities that are important

and are compulsorily needed to be implemented are described in this section and explained on how

they are achieved. The high level working of the framework can be described as given in Figure 4.2

Figure 4.2: Proposed Design of the Framework

34 CHAPTER 4. DESIGN

4.2.1 User Responsibilities

The user is responsible for running the framework and providing the framework with correct files and

permissions required for it to perform the given tasks.

• Configuration File

The configuration file is responsible for providing the framework with most of the information

needed for it to run successfully and complete its operations. It includes all the information such

as the dependencies, logging, algorithm file details, cluster configurations to run the algorithm

on and other important connection details such as IP addresses or login credentials.

• Running the framework

As shown in the Figure 4.2, the framework needs to be run on the master node where it will

use the configuration file to complete initialization. It will then configure the whole cluster and

get it ready for computing. After, the cluster is configured, the framework can then use the

configuration file to run the experiments on the cluster and process the results. The user needs to

start the cluster and debug any issues that the cluster might show in its initial setup. After the

issues are resolved the cluster will begin the computation and will showcase the results whenever

they are available.

4.2.2 Framework Functionalities

Setting up the cluster

Figure 4.3: Proposed set up of nodes in the cluster

The framework needs to be able to automatically set up the cluster and its nodes for computation

(Requirement R4). This can be achieved by using the MPI protocols during the run time (Refer

Figure 4.3). The user needs to provide the framework with the preferred configuration using the

configuration file. This is an optional requirement for the framework and by default, the framework

4.2. FRAMEWORK 35

will run the computation on all the configurations possible to provide a wide variety of data for better

analysis. Once the nodes receive their particular configurations, algorithms and collection of data can

start.

Splitting the problem

Figure 4.4: Splitting of data for cluster computing

After the nodes are configured for computation, the next step is the actual computation (R5 and R6).

This includes providing each node with their individual slice of data to compute on. This can also be

achieved through MPI protocols. The big data on the master node is sliced into smaller chunks so that

each nodes has a small part to compute and return the results to master. As discussed in Chapter 2, this

is the main essence of parallel computing - to reduce the computation time and increase performance

by reducing the work load on individual nodes by distributing the overall computing work across

number of nodes.

Running the algorithm

After the cluster is setup and each node provided with their part of problem to compute, we need to

provide the nodes with the actual set of instructions to perform the computation (algorithms)(R5 and

R6). The user needs to provide the actual algorithm file and declare its usage in the configuration

file. The configuration can include specifications such as location of the file, parameters needed

for algorithm, the dependencies, the output format, and other needed factors which are important in

running the experiments. The framework should send the algorithm file to each node and the nodes are

supposed to run the algorithm as per the specifications provided by the framework (Refer Figure 4.5).

36 CHAPTER 4. DESIGN

Figure 4.5: Running of an algorithm in a cluster

Collecting energy data

Figure 4.6: Collecting energy consumption values

The requirements R7 and R8 can be achieved through implementing a functionality to monitor and

log the energy consumption of each node. Measuring the energy consumption of a particular node

is hard to achieve using purely software methods. For accurate measurements there needs to be a

hardware interface installed at the power source which can monitor and send the energy consumption

data to the framework. This can be achieved through a number of steps. A digital power source with

sensors can help in collection of the energy data (Refer Figure 4.6).

Storing the algorithm output in the database

Collection of data from algorithm is an important aspect of any framework. Algorithms can have many

different outputs which can range from just a log entry to an important result of a computation. The

framework cannot and should not restrict users on the output their algorithm provides and hence, a

framework should be able to accommodate whatever output the algorithms generates. This functionality

will help in achieving requirements R3, R9 and R1. The data collected through this medium is the

4.2. FRAMEWORK 37

Figure 4.7: Collecting and storing algorithm output data

raw data generated by a particular algorithm and can help the researcher in monitoring, evaluating or

debugging the algorithm when needed.

Exporting the data

Figure 4.8: Exporting collected data to a file

38 CHAPTER 4. DESIGN

Data exporting is a great way to permanently store and archive the data. It can also lead to future

improvements by implementing new functionality to use this data. The framework stores the data from

the computation into a local database. The user can then export that data into a compatible file format

which can be used to analyse the data further or add new functionalities to the data. This functionality

is important to the goals of this thesis as this allows the researcher more control over the data and

freedom to analyse the data in number of ways. Requirement R9 can be full-filled through this design

and this can help in achieving Requirement R2 as well.

4.3 Summary

This chapter provides an abstract idea developed to meet all the requirements in Section 3.6. As

discussed, two-fold implementation was required to be able to be able to provide answers to the

research questions. Section 4.1 provided a generic design for the cluster setup. It shows the process

in which individual nodes can be connected to each other and used for the purposes of this study.

Section 4.2 provided the design for the framework. Functionalities of the framework and the way

to achieve them were also shown. The chapter concluded with a general idea which will be used to

develop an implementation in the further chapters.

Chapter 5

IMPLEMENTATION

A two-fold implementation was needed to achieve the goal of the thesis. As discussed in Chapter 4,

high level conceptual idea was designed which would help in answering the research questions set out

for this work. Based on Section 4.1 and Section 4.2, both hardware and software implementations were

performed to achieve the necessary design. Both implementations had their own sets of requirements,

characteristics and set-backs. This chapter provides the steps undertaken to implement the design,

justification for those steps and the issues encountered while doing the same. The aim of this chapter

is to provide the reader with the understanding and means to exactly replicate the work performed in

this thesis.

The first implementation was that of the design and development of the required computing

hardware system. For the purposes of this thesis, a cluster of 8 RPi3B+ was designed and implemented

based on the design in Section 4.1. Steps undertaken while developing the cluster is explained in-depth

in Section 5.1. The thought-process behind choosing the node computers and other important decisions

required while developing the framework have also been described in Section 5.1. Figure 5.1 shows

the final cluster setup achieved after the implementation of the design in Section 4.1.

39

40 CHAPTER 5. IMPLEMENTATION

Figure 5.1: Implementation of the proposed cluster hardware

The second implementation was that of a software framework based on the design set out in Sec-

tion 4.2, full-filing the requirements in Section 3.6 and achieving the research questions in Section 1.1.

This implementation is the main goal of this thesis and was designed and implemented with all the aims

of this thesis in mind. More information on the design and the process of development is described

further in Section 5.2. Figure 5.2 shows the final high-level workings of the framework after the

implementation of the design in Section 4.2.

5.1. IMPLEMENTATION OF COMPUTING CLUSTER 41

Figure 5.2: Implementation of the proposed framework

5.1 Implementation of Computing Cluster

The aim of the thesis is to develop a framework that facilitates the evaluation of different cluster

configuration focusing on their energy consumption. The first step in achieving this is to obtain a

computing platform or, in this sense, a cluster. This section describes the process of development of

the cluster and the decisions undertaken while its development.

5.1.1 Node Computer

As described in Chapter 2, a cluster comprises of a number of nodes inter-connected to obtain an

increase in performance. These individual nodes are computers with their own memory, storage and

other characteristics. As the main aim of this thesis is to focus on the energy consumption of a cluster,

individual nodes which performed comparatively well for low energy consumption were ideal for

nodes. After extensive research in the field of cluster computing (Section 2.2.4) and benchmarking

(Section 2.4.3), it was decided to use a Single Board Computers for the development of cluster. SBC

performed reasonably well for their low energy consumption (Cloutier et al., 2016). For the purposes

of our study, RPi was chosen as the SBC for cluster as it has been a center of attraction due to its

advancements and characteristics from last few years (Basford et al., 2020). Many reaserchers in the

similiar field have also used RPi over other SBC boards for their computing needs (Saffran et al., 2016;

Cloutier et al., 2016; Basford et al., 2020; Qureshi and Koubaa, 2017; Srinivasan et al., 2018; Schot,

42 CHAPTER 5. IMPLEMENTATION

2015; Markovic et al., 2018; Rahmat et al., 2019; Tso et al., 2013).

Raspberry Pi foundation is a UK based charity responsible for the manufacturing and development

of Raspberry Pi boards. During the writing of this thesis, the latest RPi released by Raspberry Pi

foundation was the RPi4 Model B. The specifications of the board includes Broadcom BCM2711,

Quad core Cortex-A72 processor. The user can choose from different variants of RPi4B model based

on the memory (2GB, 4GB or 8GB). Due to availability and constraints of buying ability, RPi4B

could not be used for the cluster development process. Also, RPi4B has been known to exhibit a lot

of bugs along with corruption of system after extended use. Support or compatible libraries are also

not available for RPi4B due to it being announced recently. The next powerful board developed by

Raspberry Pi foundation - RPi3B+ (Figure 5.3) was chosen. It features 1GB RAM with Broadcom

BCM2837B0 quad-core A53 processor. RPi3B+ is a lot stable as compared to RPi4B and has support

for maximum libraries used for computing. It contains Gigabit Ethernet connection (Section 4.1) for

faster data transmission.

Figure 5.3: Raspberry Pi3B+ (Source: www.raspberrypi.org)

5.1.2 Retrieving Energy consumption values

The ability to be able to monitor the energy consumption of a particular node or the cluster as whole

is an important aspect of our system. All the past researchers installed extra hardware such as USB

energy monitor (Saffran et al., 2016), monitoring hardware between power source (Cloutier et al.,

2016; Qureshi and Koubaa, 2017) and the nodes and theoretical calculations (Rahmat et al., 2019) to

obtain the energy consumption values for a computing node. For the purposes of this study the power

monitoring sensors installed in the industry grade fully managed switch - Netgear GS110TP were used

to monitor the energy consumption. Figure 5.4 shows the chosen switch for our cluster design.

www.raspberrypi.org

5.1. IMPLEMENTATION OF COMPUTING CLUSTER 43

Figure 5.4: Netgear GS110TP Fully Managed Switch (Source: www.netgear.org)

Following three important features were used to determine which switch to choose for our cluster:

1. Software accessible energy consumption values

This was the most important factor in deciding the switch to be chosen. The framework is a

software based and it needs to be able to access the energy consumption values easily through

executable scripts. After extensive research, it was found out that GS110TP switch had a telnet

server residing on it which can be exploited to retrieve values from the switches sensors. Using

the telnet server, all the configuration and generated data can be controlled and read through

from any local computer connected to it. This was the main deciding factor while choosing the

switch as this features meant that the framework can be truly automated and can be advanced to

include newer features in future.

2. Power Over Ethernet support (PoE)

Managed switches contain Ethernet ports which support power supply through them. This also

enables the switches to log the energy consumption values locally as seen in the previous section.

GS110TP contains 8 PoE enabled ports which can provide a stable of 7.5 Watt of energy to the

connected computers. Ideal energy consumption of a RPi is only 2 Watt and hence, the switch

provided more than enough energy to power all the nodes. PoE also reduced the cluttering

required to power the nodes. PoE splitter is required to dessipate the power to the nodes and the

data transmission to the ethernet port on nodes. Figure 5.5 shows the PoE splitter used for our

cluster.

3. Web Interface for easy management of nodes

GS110TP managed switches contain a web server on it which provides the user with a easy

and configurable web interface to be able to interact with the switch. Figure 5.6 shows the web

interface option which shows the energy consumed by each port. Apart from this, the web

interface also provides many other options like turning power on and off remotely, monitoring

the traffic, security, authentication, etc. This feature is very useful when the user does not have

physical access to the switch and wants to remotely config it or debug an issue.

www.netgear.org

44 CHAPTER 5. IMPLEMENTATION

Figure 5.5: PoE Splitter (Source: https://core-electronics.com.au)

Figure 5.6: Web Interface for management of the switch

5.1.3 Cluster Setup

As shown in Figure 5.1, the final cluster implementation involved of eight individual RPi3B+ connected

to each other using Ethernet cables, switch and router. Exact process of installation and setup of cluster

for computing is documented in this section.

Seven of the eight RPi3B+ are computing nodes while one RPi3B+ acts as a networking configura-

tion node. It provides other seven with the required network configurations necessary to facilitate the

cluster computing.

Operating System

Operating System is the most basic component of any computer. RPi3B+ only provides a bare

hardware. Operating system installed on it will facilitate the use of processors and other components

https://core-electronics.com.au

5.1. IMPLEMENTATION OF COMPUTING CLUSTER 45

for computation purposes. As the aim of this thesis and any computing cluster is to maximize the

performance from the cluster, a lightweight and highly optimised Operating System needs to be chosen

which provides the most resources for computing. Official and unofficial operating system distributions

for RPi were compared based on their size, support and reliability(Refer to Table 5.1).

Name
Size
(GB) Source

1 Raspberry Pi OS 7.37 https://www.raspberrypi.org/downloads/

2 Raspberry Pi OS Lite 1.85 https://www.raspberrypi.org/downloads/

3 Dietpi 1.07 https://dietpi.com

4 TinyCore Linux 0.18 http://tinycorelinux.net/downloads.html

Table 5.1: RPi Operating System Distributions

DietPi was chosen to be used as an Operating System for our system. DietPi is a Debian-based

Linux distribution, primarily developed for single board computers and hence it is highly optimized

to gain maximum performance. Also, DietPi comes with an Software Manager that can be used to

install software easily. Unlike the official Operating System which includes a lot of unneeded software,

DietPi only comes with the necessary packages installed. Also, DietPi works on Command Line

Interface, due to which resources used by a GUI based OS are used for computing purposes.

Networking

Traditionally, RPi’s are booted by flashing the image of Operating System onto a SD card and then

inserting the SD card into RPi. Due to the lightweight nature of DietPi and other benefits listed below,

it was decided to use network booting for each nodes in a cluster. Network booting basically means

that booting a computer from a network rather than a local drive. There is a server and a client in

network booting. Client requests server for the boot instructions. Server then assigns a IP address to

the client and provide boot instructions over network. Network boot provides three significant benefits

over normal boot:

1. Client machine does not need any hardware storage or Operating System installed.

2. Client machine can be restarted remotely in case of system failure.

3. Client configuration can be easily changed. Just need to change once on the server and after

restart all the clients have the same configuration.

As a part of network booting, clients are provided an IP address and boot instructions. Dynamic

Host Configuration Protocol (DHCP) server are installed on the server for allocation of IP addresses

and to provide information to each node in a cluster for efficient communication between endpoints.

Generally, in network booting, the boot files and the root file-system are all stored on the server and

https://www.raspberrypi.org/downloads/
https://www.raspberrypi.org/downloads/
https://dietpi.com
http://tinycorelinux.net/downloads.html

46 CHAPTER 5. IMPLEMENTATION

the clients use Network File System Protocol (NFS) to access the files and folder on the server. This is

useful where the changes to the files on server are required to be updated on clients as well.

Figure 5.7 shows the very high level idea of network booting in our system.

Figure 5.7: Network Booting Steps

Software Setup

Once the file-system is mounted and boot completed, next step included installing a Message

Passing Interface (MPI) library which is necessary for parallel computing. Open MPI (https:

//www.open-mpi.org) was used for message passing and process handling in our system. Open MPI

supports the latest MPI-3.1 standards along with dynamic process spawning. This is very important

functionality for our system as it will allow the system to remotely spawn processes (execute algo-

rithms) on computing nodes. It is network fault tolerant and supports all types of networks. A simple

“helloworld” program was executed using MPI to check its correct installation on all the nodes.

5.1.4 Final Setup

The cluster setup actually implemented can be seen in Figures 5.8, 5.9 and 5.10. Due to lack of

hardware acquisition, no sturdy mounting hardware was available. Hence, six RPi3B+ were mounted

on top of each other using screws. Two RPi3B+ were mounted together to distinguish them from the

cluster. The top RPi is the one providing the network boot and file-system to other nodes (Denoted

https://www.open-mpi.org
https://www.open-mpi.org

5.1. IMPLEMENTATION OF COMPUTING CLUSTER 47

by B) whereas the bottom one is the master node (Denoted by M). The six RPiś were purely used for

computing purposes (Labelled as S1, S2, S3, S4, S5, S6).

Figure 5.8: Final Set Up of the Implemented Cluster

Figure 5.9: Final Setup - Netboot and
Master node Figure 5.10: Final Setup - Slave nodes

48 CHAPTER 5. IMPLEMENTATION

5.2 Implementation of Framework

A fully set up cluster is developed in which individual nodes are booted, have IP addresses and

can effectively communicate with each other. Figure 5.2 showcases the high level workings of the

framework. Once the cluster was set up, implementation of the framework started. Each independent

and individual functionality of the framework was developed separately and then combined in the end.

This section describes the process of development of the framework and its different components.

5.2.1 Framework language

The development of any software framework starts by choosing the programming language to develop

it in. For our study, JavaScript was chosen as the preferred language due to its cross-compatibility and

wide use. JavaScript is mainly used to generate interactive web-pages. NodeJS is a cross-platform

run-time environment that executes JavaScript outside of web browsers. For this study, the framework

was decided to be developed so that it can be accessed via the Command Line Interface (CLI). As

NodeJS also supports development of web based GUI applications, it won’t be hard to develop a GUI

for our CLI based framework. The framework was developed and evaluated using NodeJS environment

because of the following reasons:

1. Synchronisation

NodeJS is a asynchronous platform which does not wait of operations to complete before starting

new operations. Instead it uses callbacks. The callback function is called when the block of code

finishes execution. NodeJS also supports synchronous methods which block the execution of

code until the result from a function is not received. This is particularly important feature as this

allows the framework to execute a function in background while blocking another function in

foreground.

2. Integration with Computer System Utilities

NodeJS have a wide base of modules which are developed to implement a particular functionality

or to improve on another one. NodeJS has modules which can interact with the Command

Line Interface (Module: child process), read and write JSON files (Module: edit-json-file),

connecting to servers (Module: telnet-client, mysql), remote management of computers (Module:

node-ssh), etc. All these modules were used to develop each individual functionality of the

framework.

3. Widely supported and used

NodeJS have been widely used as a server-side environment to develop JavaScript applications

for web-pages. It supports almost every architecture (MAC, Linux, Windows) and is heavily

backed by the community to find and solve issues.

5.2. IMPLEMENTATION OF FRAMEWORK 49

5.2.2 Configuration file

The configuration file is most important part of the framework. The framework is dependent on the

configuration file for each part of its functioning. An extract from the configuration file is given

below (Refer Appendix A for full configuration file). This section explains the different fields of the

configuration file and how each of them affect the workings of the framework.

"__comment":

"Configuration file for FEPAC",

"app": {

"hostfile_folder":

"algorithms/hostfile",

"max_nodes": 7,

"max_threads": 4

"data_file": null,

"start_node": null,

"start_thread": null

}

"switch_telnet": {

"IP": "192.168.50.150",

"port": 60000,

"login": "admin",

"password": "password",

"interval_to_call": 1000

},

"db": {

"user": "root",

"password": "qazwsxedc"

},

"algorithm": {

"matrix_multiplication": {

"language": "python3",

"dependency": "mpi4py numpy",

"parameters": "3000 3000",

"command": "python3 multiply.py"

},

"kmeans_c": {

"language": "C",

"dependency": "GCC",

"parameters": "288000 48",

"command": "./kmeans_c.exe"

}

}

The “app” field describes the parameters that the

framework uses to configure the target cluster for com-

puting. “hostfile folder” is the location of host file,

containing the IP addresses for each node in a cluster.

“max nodes” and “max threads” define the maximum

number of nodes and threads to be used on each node

respectively. “data file” is the location of the file where

the temporary log of the framework is to be stored.

“start node” and “start thread” defines the exact config-

uration of the cluster to execute the experiment on.

The “switch telnet” field defines and declares the

information needed for the framework to connect to

the telnet server located on the switch. As discussed

in Section 5.1, the energy consumption values for the

cluster are obtained from the telnet server located on

the switch. “interval” is the time delay between two

consecutive retrievals of data.

The “db” field defines the credential required by

framework to connect to the local MySQL database.

The database is used to store log information and results

from computations.

The “algorithm” field defines the parameters and

information required by the framework to effectively

execute the algorithm based on the cluster configuration

declared in “app” field. “Language” defines the pro-

gramming language in which the algorithm is written.

“Dependency” helps the framework in understanding

the required libraries for that particular algorithm. The

framework attempts to install these libraries if they do

not exist. “Parameters” field define the actual values

to be passed to the algorithm while execution. The

framework uses the “command” field to execute the

algorithm on different nodes

50 CHAPTER 5. IMPLEMENTATION

5.2.3 Development of Individual Functionality

This section explains in detail few of the important functionalities of the framework. Three main

functionalities were identified for the framework during its design.

Retrieving energy values

As explained in the Section 5.1, there was no external hardware installed to measure the energy

consumption of the cluster. It was done through retrieval of values from the internal sensors in the

switch via a telnet server. The telnet server on the switch contains a lot of data regarding the working

of the switch, devices connected to it, monitoring of those devices, etc. The main issue was that the

telnet server provided information as a long buffer (a very long string) with pairs of fields and values.

As shown in Figure 5.11, the location of the values in the buffer was found out using trial and error

methods and the values were then sliced from it and stored into an array. MySQL queries were than

used to store the values into local database. Figure 5.12 shows the format in which the values are

stored in the local database.

var pwr = [];

pwr[1] = parseFloat(res.slice(1163, 1223).slice(15, 18))

pwr[2] = parseFloat(res.slice(1224, 1284).slice(15, 18))

pwr[3] = parseFloat(res.slice(1285, 1345).slice(15, 18))

pwr[4] = parseFloat(res.slice(1346, 1406).slice(15, 18))

pwr[5] = parseFloat(res.slice(1407, 1467).slice(15, 18))

pwr[6] = parseFloat(res.slice(1468, 1528).slice(15, 18))

pwr[7] = parseFloat(res.slice(1529, 1589).slice(15, 18))

var qinsertpwr = ‘INSERT INTO ${tb_name}

(timestamp, description, p1, p2, p3, p4, p5, p6, p7) VALUES

(${Date.now()},’ ’, ${pwr[1]} , ${pwr[2]} , ${pwr[3]} ,

${pwr[4]} , ${pwr[5]} , ${pwr[6]} , ${pwr[7]})‘;

Figure 5.11: Collection of energy consumption values through code

5.2. IMPLEMENTATION OF FRAMEWORK 51

MariaDB [mytestdb]> select * from test;

+---------------+-------------+------+------+------+------+------+------+------+

| timestamp | description | p1 | p2 | p3 | p4 | p5 | p6 | p7 |

+---------------+-------------+------+------+------+------+------+------+------+

| 1599371624774 | Start | NULL | NULL | NULL | NULL | NULL | NULL | NULL |

| 1599371627814 | | 3 | 3.1 | 3 | 3 | 3 | 3.5 | 2.6 |

| 1599371628812 | | 3 | 2.8 | 3 | 3 | 3 | 3.5 | 2.6 |

| 1599371629813 | | 3 | 2.8 | 3 | 3.5 | 3.1 | 3 | 3 |

| 1599371630814 | | 3 | 2.8 | 3 | 3.5 | 3.1 | 3 | 3 |

| 1599371631814 | | 3.5 | 3.1 | 3 | 3.5 | 3.1 | 3 | 3 |

| 1599371632816 | | 3.5 | 3.1 | 3.2 | 3 | 3.1 | 2.9 | 3 |

| 1599371633817 | | 3.5 | 3.1 | 3.2 | 3 | 3.1 | 2.9 | 3 |

| 1599371634817 | | 3 | 3.1 | 3.2 | 3 | 3.1 | 2.9 | 3 |

| 1599371635819 | | 3 | 3.1 | 3 | 2.7 | 3 | 3.7 | 2.7 |

| 1599371673858 | | 3 | 2.8 | 3 | 2.7 | 3.1 | 3 | 3.7 |

| 1599383262098 | Start | NULL | NULL | NULL | NULL | NULL | NULL | NULL |

| 1599383265141 | | 2.6 | 3.6 | 3.5 | 3 | 3.2 | 3 | 2.9 |

| 1599383266139 | | 2.6 | 3.6 | 3.5 | 3 | 3.2 | 3 | 2.9 |

| 1599383267140 | | 3.3 | 3.1 | 3 | 3.1 | 3 | 3.1 | 3 |

| 1599383268141 | | 3.3 | 3.1 | 3 | 3.1 | 3 | 3.1 | 3 |

| 1599383269142 | | 3.3 | 3.1 | 3 | 3.1 | 3 | 3.1 | 3 |

| 1599383270142 | | 3 | 2.8 | 2.7 | 3.8 | 2.7 | 3.1 | 3 |

| 1599383271142 | | 3 | 2.8 | 2.7 | 3.8 | 2.7 | 3.1 | 3 |

| 1599383370610 | Start | NULL | NULL | NULL | NULL | NULL | NULL | NULL |

+---------------+-------------+------+------+------+------+------+------+------+

Figure 5.12: Energy Values stored in local MySQL Database

52 CHAPTER 5. IMPLEMENTATION

Running experiments

The experiments are execute by the framework in accordance to the configuration parameters by

the researcher in the configuration file. The framework retrieves the values from the configuration

files shown in Section 5.2.2 and runs the experiments accordingly. The framework uses the MPI to

configure the cluster as shown in Figure 5.13. The framework then spawns a pseudo-terminal with help

of remote management module on each node and executes the command provided in the “command”

field. A simple example of “helloworld” program being execute on 1 Node 4 Threads is shown in

Figure 5.13. The hostfile parameter is a file that contains all the IP addresses or host-name of other

nodes and also declares the number of threads available on each in the cluster.

pi@boot:~/mpi $ cat hostfile

localhost slots=4

master slots=4

slave1 slots=10

slave2 slots=10

slave3 slots=10

pi@boot:~/mpi $ mpirun -np 4 --hostfile hostfile python3 helloworld.py

Boot: Hello, World! I am process 2 of 4 on boot.

Boot: Hello, World! I am process 3 of 4 on boot.

Boot: Hello, World! I am process 1 of 4 on boot.

Boot: Hello, World! I am process 0 of 4 on boot.

Figure 5.13: Using MPI to execute algorithm across multiple nodes

Exporting data

As shown in Figure 5.12, the data stored in the database consists of instantaneous values of energy

consumption. Analysis of such data is tedious and it was decided that for a particular algorithm,

average value of energy consumption would be calculated based on the start and end time of the

algorithm. The export functionality of the framework automatically does the averaging of data. The

researcher can export the raw data as well if required, but by default the framework exports the data

in format as shown in Figure 5.15. The data is exported in JSON format so that it can be used in

other analysis software easily. The first field in the exported file is the algorithm name and then the

configuration of the cluster. Second and third field denotes the number of nodes and threads being

used respectively. On fourth level is the timestamp - duration for which the algorithm was running and

the average power values of the cluster for that duration. p1-p7 denotes the individual nodes where p1

is the master node and other six are computing nodes.

5.2. IMPLEMENTATION OF FRAMEWORK 53

"opencv": {

"1": {

"2": {

"timestamp": {

"start": "1598965940040",

"end": "1598966009730"

},

"pwr_avg": {

"p1": 4.239130403684533,

"p2": 3.1246376175811323,

"p3": 2.947826091794,

"p4": 3.0826086894325586,

"p5": 2.9565217391304346,

"p6": 3.0956521241561226,

"p7": 3.056521747423255

}

},

"5": {

"1": {

"timestamp": {

"start": "1599003659274",

"end": "1599003754051"

},

"pwr_avg": {

"p1": 3.3585106464142496,

"p2": 3.4968085035364678,

"p3": 3.258510635254231,

"p4": 3.407446808003365,

"p5": 3.467021287755763,

"p6": 3.015957403690257,

"p7": 3.0212765982810486

}

},

}

}

Figure 5.14: Exported data in JSON format

5.2.4 Final Setup

In this section, few snippets of the final framework are included.

54 CHAPTER 5. IMPLEMENTATION

Figure 5.15: Final Implemented Framework and its Menu

5.3. SUMMARY 55

5.3 Summary

The implementation of framework which can help in evaluation of different parallel algorithms on

different cluster configurations is presented in this Chapter. A two-fold implementation undertaken for

this thesis is showcased. Section 5.1 describes in detail the steps in implemented to achieve a final

cluster of 8 RPi3B+ nodes based on design in Section 4.1. Section 5.2 includes the implementation of

framework outlined in Section 4.2. This chapter aims to aid researchers in replicating our implemented

work and achieve similar output.

Chapter 6

EVALUATION

Chapter 5 provides the implementation of the design outlined in Chapter 4. Both the hardware and

the software implementation of the work in this thesis has been provided. This chapter evaluates the

designed system based on the methodology in Chapter 3. The system is evaluated using two different

methods - Qualitative and Quantitative.

Qualitative evaluation (Section 6.1) focuses on the contribution of our proposed system in terms

of its quality. The section evaluated the designed system based on a comparative study with the

requirements in Section 3.6. Qualitative evaluation is achieved by reviewing the requirements in

Section 3.6 with relation to the achieved functionality of the system. This is then used to discuss

and co-relate the findings back to the research questions of this thesis. For the purposes of this study,

the system is considered to be successful in qualitative evaluation when it achieves the requirements

set-out in Section 3.6.

Quantitative evaluation is done by running a series of experiments with the help of the designed

system to achieve quantitative data. The main focus of this method of evaluation is to relate the results

of these experiments with the requirements and the research questions of this thesis. The results of

those experiments are not the main focus of this chapter but rather what those results depict. The

experiments are based on the real life computing scenarios including 6 different types of experiments.

This will also help the readers in understanding the workings of the system and how to interpret the

results in future.

6.1 Qualitative Evaluation

The system is evaluated qualitatively in this section by showing that the system achieves the re-

quirements given in Section 3.6.The impact of each requirement shown and up to what extent the

requirements are being met or not met has been discussed.

R1 The proposed system shall help researchers in deciding the best optimal performance for their

energy constraints.
56

6.1. QUALITATIVE EVALUATION 57

This is a domain level requirement which is closely related to the research questions for this thesis.

The system designed meets this requirement by providing a method to support researchers in

evaluating different algorithms on different cluster configurations. The system allows a researcher

to specify a range of cluster and algorithm configurations to evaluate. After experiments are

performed, data can be exported which can then be tabulated and graphed for further analysis.

The results from the system can help the researchers in their decision making and identification

of best possible scenarios for their given computation.

R2 The proposed system shall support the identification of bottlenecks for a given computation for

a cluster configuration.

The system designed meets this requirement by providing them with the results from the conclu-

sions which can then help them in analysing the data. This analysis can lead to identification of

discrepancies in the results, inconsistent data or irregular patterns which all suggests involvement

of bottlenecks. When the data is consistent with similar experiments in literature or follows a

certain pattern, the researchers can conclude that the bottlenecks are not present or that they are

not significant. This analysis of the data will help motivate further research in the field and can

help researchers in finding ways to identify and overcome or minimize these bottlenecks for

their particular computation.

R3 The proposed system will allow the specification of a range of repeated and repeatable experi-

ments which varies algorithm parameters and cluster configurations.

The system designed meets this requirement by allowing a wide range of parameters and

configurations to be passed while conducting the experiments. A researcher can specify, in the

configuration file, exactly how the cluster needs to be configured for computing, how many

times to iterate the experiment and also specify parameters for the computation. This will help

researchers gain larger control over their experimental setup and the whole experiment can be

repeated or reconfigured by editing the configuration file and allowing the system to do the

manual tasks.

R4 The proposed system shall automatically configure the target cluster for the computation needs

as defined in the experiment configuration.

The designed system meets this requirement by providing researcher with a method to specify

the maximum nodes to use and also the number of threads to be used on each (Refer Figure 6.1).

By default the system performs the experiments from one node one thread upto the “max nodes”

and “max threads” as specified in the configuration file. The system also provides a method to

over-ride this functionality. “current node” and “current thread” fields specify the system which

configuration to configure the target cluster. Using this, a researcher can perform an experiment

with specific configuration to get the computing results faster and more specific to their goals.

R5 The proposed system shall automatically execute different algorithms on different cluster config-

urations.

58 CHAPTER 6. EVALUATION

"__comment": "Configuration file for FEPAC",

"app": {

"__comment1": "NodeJS code",

"port": 8000,

"master_node_ip": "192.168.50.220",

"folder_location_on_nodes": "~/Honours_Framework",

"max_nodes": 7,

"max_threads": 4,

"__comment2": "Fill this to overwrite the default values used.

Default: Name of algorithm.",

"data_file": null,

"current_node": null,

"current_thread": null

},

Figure 6.1: Configuration File extract for target cluster configurations

The designed system meets this requirement by providing researchers a method specify all

the algorithms available for the system to run the experiments on. The system chooses one

algorithm at a time and executes the algorithm for all the specified cluster configurations. The

researcher can then specify if they want to execute any other algorithm. If the researcher want to

makes changes to the configuration specification then they have to stop the current execution of

algorithm and re-run it after editing the configuration file.

R6 The proposed system shall support multiple algorithms from different languages.

The designed system meets this requirement by adopting an universal and generic approach

towards the execution of algorithms. The system utilises Command line system to execute

the algorithm. The researchers provides the command used to execute the algorithm and also

specifies the supporting libraries needed in the configuration file (Refer to Figure 6.2). The

system will attempt to install the missing libraries and execute the algorithm using the command

given. As command line system is available universally, our system supports any and all

algorithms which can be executed using this method.

R7 The proposed system shall provide a performance-energy (FLOPS/W) analysis of a different

cluster configurations.

The designed system partially meets this requirement by providing the researcher with results

from the computation in terms of Energy Consumption (Watt-hr) and the specifications of the

experiment conducted. Different cluster configurations will result into variety of Floating Point

Operations Per Second (FLOPS) to be conducted. The researcher can use the data provided

by the system to calculate the FLOPS/W and analyse based on the calculations. Note that this

value needs to be adjusted to reflect and accommodate for other factors like energy used by

non-computing resources.

6.1. QUALITATIVE EVALUATION 59

"matrix_multiplication": {

"__comment": "All paths should be relative. Create a data file by

algorithm name at /logs/*.json",

"language": "python3",

"dependency": "mpi4py numpy openMPI",

"parameters": "3000 3000",

"command": "python3

algorithms/matrix_multiplication/matrixmultiplication.py",

},

"kmeans_c": {

"__comment": "All paths should be relative. Create a data file by

algorithm name at /logs/*.json",

"language": "C",

"dependency": "GCC openMPI",

"parameter": "288000 48",

"command": "./algorithms/kmeans_c/kmeans_c.exe",

"file_path": "algorithms/kmeans_c/kmeans_c.exe",

}

Figure 6.2: Configuration file extract for instructions on execution of Algorithms

R8 The proposed system shall be able to export the experiment data for further analysis.

The designed system meets this requirement by providing user an option to export data into a

JSON format file. The data for the specified experiment is retrieved from the local database

and written to a file which can then be used to perform further analysis. The system allows

researchers to specify parameters while exporting of data. These parameters also allow filtering

of the data so that researchers can export only the relevant data. The parameters include the

cluster configuration, algorithm type, algorithm specification such as the parameters or output,

energy thresholds, etc. This functionality will help researchers in implementing new specific

features easily to make use of the exported data and analyse or conclude results further.

R9 The proposed system shall be compatible across different processor architectures.

The designed system itself is developed on JavaScript, a programming language which supports

wide range of computer architectures and Operating systems. The system is developed to

minimize the installation process and every functionality in the system is implemented using

generic approaches. The system as whole is not restricted by any processor architecture and as

long as the processor has support for JavaScript, the system will be compatible. This requirement

helps ensure that the system is available for use by researchers with different resources available

for computing.

60 CHAPTER 6. EVALUATION

6.2 Quantitative Evaluation

This section showcases the results from different experiments conducted using the designed system.

Quantitative data of all these requirements are presented and the requirements are met by the designed

system in real life based computing scenarios. Note that, the results by themselves are not related to

the research questions but they help in understanding how the research questions are achieved in real

life scenarios. The in-depth discussion is later provided in Chapter 7

The aims of the experiments are to showcase the workings of the system designed with the help

of a particular use case of algorithm and parameters. The experiments relates to Requirements R1 to

R8. As the main goal of the system is to be able to evaluate different algorithms on different cluster

configurations, each of these experiments focus on a single algorithm and the results obtained from

the experiments conducted on those algorithms. The results are then co-related to the requirements

and their relevance to the research questions is justified. Table 6.1 briefly summarises the algorithms

evaluated and their parameters.

Name Application Computation details

Matrix Multiplicaiton Graph Theory
Dot product of matrices

of 3000x3000 elements

Kmeans Data Mining
Clustering of 288000 data

points into 48 clusters

OpenCV Filtering Image Processing

5 Images (1920x1080 pixels)

Applied filters on each image:

blur, sepia, emboss, warm,

cold and increased brightness.

Table 6.1: List of Algorithms Evaluated and their Parameters

6.2.1 Multiple run of single experiment on different cluster configuration

The aim of this experiment is to test Requirements R1, R2, R3 and R4. In order to check that the

system helps in identifying the bottlenecks, the system needs to be pushed to its limits. Theoretically,

there is no limit to the system’s capacity to carry out the computation, but for this experiment a 3,000

elements by 3,000 elements array were used for the matrix multiplication algorithm. The algorithm is

executed for upto 12 threads on each nodes.

The experiment is setup with installation of basic libraries required for this computation. The

algorithm uses numpy, a python library which supports computation large arrays. To support parallelism

the cluster also needed installation of mpi4py package, a Python binding for the Message Passing

Interface (MPI) standard. The basic python3 package is being used. The algorithm is given the max

parameters – 6 nodes and 12 threads and was allowed to execute until it finishes the computation. Ideal

nodes are powered off to save energy. The final data is exported in a JSON file (Requirement R9 and

6.2. QUANTITATIVE EVALUATION 61

Section 6.2.3) but is shown as tabular and graphical format for ease of use and understanding (Refer to

Figure 6.3).

Figure 6.3: Evaluation of Algorithm: Matrix Multiplication with different cluster configurations

The Y-axis shows the Watt-hr values and the X-axis shows the node configuration. As seen from the

graph and the raw data, a researcher can clearly conclude saying that increase in nodes leads to faster

computation and less energy consumption for the duration of computation. The energy consumed

is definitely increasing when a new node is added, but that is compensated by the speedup in the

performance. The graph also shows that for small amount of nodes that the energy consumption stays

constant or gets worse after 4 threads on each node.

Analysing the result with relation to the aims of the experiment (Achieving Requirements R1, R2,

R3 and R4), it can be concluded that all of the requirements are successfully met.

• Requirement R1 involves aiding the user in choosing the best possible cluster configuration.

This is successfully met as a researcher can use the data given above to stop the experiments

from running on more than 4 threads on each node to save time and energy in future.

• Requirement R2 includes identification of bottlenecks in the computing, which has been full-

filled (No improvement after 4 threads on each node).

• Requirement R3 includes the specification of a range of repeated experiments. This requirement

and Requirement R4 are successfully met, shown by the number of different experiments

conducted in one single run of the system. The system configured the cluster and re-ran the

whole computation on the new configured cluster automatically without the need to be restarted.

62 CHAPTER 6. EVALUATION

6.2.2 Multiple run of single experiment with different data-set

The aim of this experiment is to test requirements R1, R3, R5, and R7. The experiment is conducted

to compare the energy consumption of a single node when different data sets are provided for it to

compute. This experiment will help us understand the effects of variable data-sets on the performance

and energy of a node.

The experimental setup is same as that of Section 6.2.1, but instead of using multiple nodes, the

experiment is performed on a single node, single thread, with different data sets. The experiment is

iterated 4 times, each time with a different data-set (starting from 600 to 960 elements each time). Two

arrays of each size are randomly generated and their product is computed using the function numpy.dot.

The results of the experiment were exported into a JSON file (Requirement R9 and Section 6.2.3) but

is shown as tabular and graphical format for ease of use and understanding (Refer to Figures 6.4, 6.5,

6.6, 6.7). The energy measured is the instantaneous energy for any given particular time.

Figure 6.4: Evaluation of Algorithm: Matrix Multiplication (Data-set of 600)

Figure 6.5: Evaluation of Algorithm: Matrix Multiplication (Data-set of 720)

6.2. QUANTITATIVE EVALUATION 63

Figure 6.6: Evaluation of Algorithm: Matrix Multiplication (Data-set of 840)

Figure 6.7: Evaluation of Algorithm: Matrix Multiplication (Data-set of 960)

The Y-axis shows the instantaneous energy consumed in Watts and the X-axis shows the data

set size. As seen from the graphs and the raw data, a clear maximum and minimum limit of energy

consumption can be identified. For different data-sets, for any given time the maximum energy

consumed is found to be 5 Watts and minimum 2.6 Watts. The factor that changes is the time taken to

compute. As the energy consumed is capped up to a certain limit, the processor is being pushed to its

maximum and has to compute for a long time to finish the big data-sets.

Analysing the result with relation to the aims of the experiment (Achieving Requirements R1, R3,

R5 and R7), it can be concluded that all of the requirements are successfully met.

• Requirement R1 involves aiding the user in choosing the best possible cluster configuration.

This is successfully met as a researcher can use the data given above to calculate the time

taken by a node to compute a certain data. Using the maximum energy consumption and the

FLOPS operations that a core can perform, a estimated completion time of an algorithm can be

calculated. This can then be used to choose the optimal cluster configuration for that particular

computing.

• Requirement R3 includes specification of a range of repeated experiments. The system in itself

repeats the experiment multiple times with different data parameters to the algorithm. This is all

achieved through the configuration file.

64 CHAPTER 6. EVALUATION

• Requirement R5 includes the execution of different algorithms automatically with support for its

changing parameters. This requirement has been partially met in this experiment as it supports

the change of parameters for the algorithm. Support for multiple algorithms is shown in further

Sections.

• Requirement R7 includes comparison of energy consumption for different computations. This

requirement is met as seen from the graphs. Energy consumption can be compared to that of

other computations in the same domain and conclusions can be devised.

6.2.3 Expansion on the functionality of the designed system

The aim of this experiment is to test Requirement R9. This is a goal level requirement and adds value

to the system. The functionality is implemented with the goal of easing further analysis. This will help

in the usability and portability of experiment data. The section also describes how this functionality be

used to implement new features and help achieve our research questions better.

There is no special experiment setup required for this experiment. This experiment builds upon

previously ran experiments whose data is available in local database.

Figure 6.8 shows an extract of the output file generated by the system. It is exported in JSON

format for easier use and cross-compatibility. The first object identifies the name of the algorithm.

The second and third level objects represent the number of nodes and threads the algorithm is being

executed on respectively. The fourth level object is a tuple data structure comprising of the timestamps

of that particular experiment and the average power consumption during the experiment.

In order to be abe to conclude that the framework meets Requirement R9, an implementation of

this functionality is shown. The raw exported data can be used to improve on the functionality of the

system. A new function in the system is implemented which reads this exported data and generates an

online graph and provides the link to access it. Appendix E shows an extract of the functionality being

included. Plotly is an online tool which can receive data through API requests and generates graph

based on the parameters (Refer Appendix F).

6.2. QUANTITATIVE EVALUATION 65

"opencv": {

"1": {

"2": {

"timestamp": {

"start": "1598965940040",

"end": "1598966009730"

},

"pwr_avg": {

"p1": 4.239130403684533,

"p2": 3.1246376175811323,

"p3": 2.947826091794,

"p4": 3.0826086894325586,

"p5": 2.9565217391304346,

"p6": 3.0956521241561226,

"p7": 3.056521747423255

},

"3": {

"timestamp": {

"start": "1598966016296",

"end": "1598966149690"

},

"pwr_avg": {

"p1": 4.513533785827178,

"p2": 3.0887217467888854,

"p3": 3.0127819534531213,

"p4": 3.0721804253140785,

"p5": 3.0338345864661656,

"p6": 3.0563909344207074,

"p7": 3.0992481116961716

}

}

}

}

Figure 6.8: Exported data in a JSON format

6.2.4 Algorithm Evaluation: Matrix Multiplication

Matrix multiplication algorithm is being used in almost all sort of research, ranging from quantum

mechanics in physics, graph theory in mathematics to gene expression in biology. This algorithm was

chosen as it has been heavily optimised to work with parallel computers. The experimental setup is not

different from the ones provided in previous Sections. The system is provided with the algorithm file,

configuration parameters and the system produces the results. The experiment is running the function

np.dot for matrix multiplication on matrices with 3,000x3,000 elements.

The results of the experiment were exported in a JSON file (Requirement R9 and Section 6.2.3).

Refer to the Appendix B for the raw data. Different parameters of the algorithm are shown in graphical

format for clarification (Refer to figures 6.9 and 6.10).

As shown in Section 6.2.1, it was decided to showcase results for experiments up to 4 threads

66 CHAPTER 6. EVALUATION

Figure 6.9: Algorithm Evaluation: Matrix Multiplication and Energy consumption

Figure 6.10: Algorithm Evaluation: Matrix Multiplication and Computation Time

on each node to clearly convey the results and to reduce the garbage data. As seen from Figures 6.9

and 6.10, matrix multiplication produces the expected results from a parallel computing algorithm.

Increase in the number of computing nodes leads to decrease in the computing time and increase in

performance. It was seen that the time to compute slowly starts flattens out at the end of 6 nodes.

The power consumption, as expected, is supposed to go up as more nodes are added or increase the

computation per node.

A researcher can calculate theoretically or experimentally the lowest computation time achievable

for the give data set and algorithm using the results. This is very useful in predictive analysis where

6.2. QUANTITATIVE EVALUATION 67

the algorithm output can be predicted based on its past performance. Researchers can also identify the

bottlenecks from the graph saying that addition of each node degrades the performance and then using

the nodes to their maximum capacity leads to increase in performance. The bottleneck here might be

the cache memory which has to load the array first time any node is added to the cluster.

6.2.5 Algorithm Evaluation: Kmeans

The Kmeans algorithm is a method that aims to partition n observations into k clusters in which each

observation belongs to the cluster with the nearest mean, serving as a prototype of the cluster (Saffran

et al., 2016). This algorithm was chosen as the algorithm heavily relies on the communication between

master and slave nodes for computing. Kmeans have less independent work units which leads to more

synchronization when the parallel work finishes. A C implementation of Kmeans is used to show the

portability of our system as well as its compatibility with FORTRAN libraries.

The experimental hardware setup is the same. For this experiment, the system was provided with

an algorithm file which in turn was provided a set of 288,000 data points to sort into 48 clusters. The

algorithm ran iteratively until the cluster centers did not change their position. Refer to the Appendix D

for the raw data and Figures 6.11 and 6.12 for the results in graphical format.

Figure 6.11: Algorithm Evaluation: Kmeans and Energy Consumption

68 CHAPTER 6. EVALUATION

Figure 6.12: Algorithm Evaluation: Kmeans and Computation Time

This algorithm was chosen as researchers have tried to parallelize the algorithm but could not gain

any significant improvements in it (Saffran et al., 2016). Looking at it from an energy perspective led

to the same conclusion. The algorithm does not improve or in some cases worsens the performance as

well as energy consumption when adding new nodes to compute.

The results can be used to conclude a number of things. It clearly showcases the bottleneck in

Kmeans algorithm - its communication and synchronisation. Also, it shows that adding new nodes

to a cluster degrades the performance of the algorithm. This result can help researchers in choosing

another algorithm or other ways to improve on algorithm for their computation needs.

6.2.6 Algorithm Evaluation: OpenCV filtering

OpenCV is a library of programming functions mainly aimed at real-time computer vision (Markovic

et al., 2018). It is mainly used in image and video processing where a large amount of data needs to

be processed in real time. The main aim of the experiment is to find the effects of image processing

libraries and its different methods on the energy consumption of a cluster and to identify its bottlenecks.

As shown in Table 6.1 six different types of filtering methods were used on 5 high-res images

recursively. Python language was used to write the algorithm. Experimental setup was similar to that

of matrix multiplication with different supporting libraries installed (opencv (3.2.0+dfsg-6)). Refer to

Appendix C for raw data and Figures 6.13 and 6.14 for the results in graphical format.

Figures 6.13 and 6.14 shows the Energy Consumption of the cluster and the Time taken by the

algorithm to finish computing respectively. As expected, the energy consumption increases with an

increase in nodes and resources being used. As for Figure 6.14, there is no significant trend in the time

required by the algorithm, but a clear bottom limit of the speed can be seen, after which the algorithm

starts to degrade performance.

The system ran the algorithm with the given configuration and provided the results shown in the

6.3. SUMMARY 69

Figure 6.13: Algorithm Evaluation: OpenCV and Energy Consumption

Figure 6.14: Algorithm Evaluation: OpenCV and Computation Time

graphs. From the graphs bottleneck for the algorithm can be hypothesized - data set being too small

for computation. No clear trend in the data also can suggest researchers to find better ways to optimise

the algorithm or motivate them to find the reason behind it.

6.3 Summary

This chapter has presented an evaluation of the designed system, FEPAC, for a wide range of parallel

algorithms on different cluster configurations. It consists of two main parts, a detailed qualitative

evaluation of how FEPAC meets the requirements and quantitative evaluation of FEPAC when ran for

three different algorithms - Matrix Multiplication, OpenCV and Kmeans.

Section 6.1 shows that FEPAC successfully met all the required criteria defined in previous chapters.

The requirements are then evaluated with the help of evidence or demonstration the functionality

corresponding to the requirement.

The evaluation of FEPAC on three algorithms provided a detailed case study which can be used

to understand the workings of the system in a real case scenario. Aims of each experiments were

discussed before the experiment results and an in-depth analysis of each experiment’s data is also

presented. Section 6.2 showcased the results of each experiment and argues that the designed system

successfully answers the research questions through quantitative results.

Chapter 7

DISCUSSION

This Chapter provides discussion of the experiments performed in Chapter 6. The results in the

evaluation are co-related to already known facts and different interpretation of the results are provided.

Apart from results of individual experiments, all the data as whole can help researchers conclude

important features, shortcomings or results. The chapter aims to document many such interpretations

and conclusions that researchers can draw out from the data generated by FEPAC.

7.1 Helping researchers in deciding best optimal node for com-

puting

The system helps in answering this concern through quantitative evaluation of different algorithms.

Figure 6.3 shows the results of using FEPAC to execute Matrix Multiplication algorithm on different

node configurations. It can be clearly seen that on an average four threads on each node produced

better performance than any other case. This can explained by the fact that RPi3B+ have a quad core

processor and the four threads access each of the four cores independently and hence present better

performance. The reason for degraded performance for configurations under 4 threads could be due to

the ideal nature of the non-computing cores. For other situations the degraded performance can be

explained due to context switching where one process has to wait for the core to finish computing

before starting work on another.

7.2 Finding relationship between data set and energy

Figure 7.1 shows the instantaneous energy consumption for Matrix Multiplication algorithm for one

single node with one single thread. The variable parameter in this experiment is the data size that the

algorithm has to compute. The algorithm was provided with four different data-sets and their energy

consumption for the duration of experiments was stored for analysis.

As seen from the figure, there is a clear upper bound and lower bound for the duration of experiment.

Also, it can be seen that the bigger data-set took more time to compute than others. This is an expected
70

7.3. HELPING RESEARCHERS IN PREDICTING THE COMPUTATION TIME FOR AN ALGORITHM71

Figure 7.1: Effects of different data-sets on Energy Consumption of an Algorithm

behaviour because the node can not consume as much energy as needed to perform computations. The

energy being consumed by the node at any time is regulated by the on-board resistors to avoid damage

to the nodes. As the energy stays constant, the processor have to wrong longer to computer bigger data

sets.

Researchers can use this data to predict the time that the algorithm will take in future. A relationship

between the increase in time and the increase in data-sets can be calculated and used to base future

predictions on. Also, seeing that there is a upper bound limit of a computation, the theoretically

maximum energy that a cluster can consume for the duration of experiments can be predicted as well.

7.3 Helping researchers in predicting the computation time for

an algorithm

The data given above comprises of the average time taken by the algorithm to complete the computation.

The three experiments conducted are different in the algorithms and the parameters passed to each

of them. The relation between the time taken by an algorithm and the cluster configuration can help

in a number of conclusions such as prediction of data, identification of bottlenecks, motivation for

improvement, etc.

As seen from the comparative graphs of computation time of all three algorithms, inconsistency of

data can be seen across different algorithms. As the algorithm is being provided with more computation

power on each iteration, the expected output is a reduction of computation time. Matrix multiplication

and OpenCV produce results as expected but Kmeans performance degrades with an increase in

computation power. This can mainly happen due to the inherent non-parallelism of kmeans algorithm.

There are very less independent work units available in kmeans algorithm and much time is spent in

synchronisation than actual computation. This results can help researchers in choosing correct cluster

configuration for the computation or motivate them to develop a more energy efficient algorithm.

Matrix multiplication and OpenCV follow expected patterns in respect to their computation times.

This data can be used and analysed to find the point of lowest computation time. It is fundamentally

72 CHAPTER 7. DISCUSSION

Figure 7.2: Ability to predict Algorithm Computation Time based on previous data

7.4. HELPING RESEARCHERS IN PREDICTING THE ENERGY CONSUMPTION OF THE CLUSTER73

known that computation time can never reach zero and hence, the graphs are expected to flatten out

after a certain amount of time. The computation time is also expected to increase after this time as

more time will be spent on communication overheads than actual computation.

7.4 Helping researchers in predicting the energy consumption of

the cluster

Figure 7.3: Ability to predict Energy Consumption based on previous data

The data given above comprises of the average energy consumption values for a given algorithm

for a particular cluster configuration. All three experiments showcases values from different algorithms

74 CHAPTER 7. DISCUSSION

with different parameters. Note that the energy consumption values are dependent on two factors- the

total energy consumed during a computation and computation time. Comparative results from all three

experiments can help in identification of a trend or to show other results.

As seen from the comparative graphs of energy consumption of all three algorithms, it can be seen

that the energy consumption increase for Kmeans and OpenCV algorithms when the number of nodes

increase. This is expected as a new node in the cluster will definitely need more energy. Researchers

can use the data to calculate and predict on increase in the energy for a certain number of nodes. This

can help researchers, who are trying to conduct experiments in same domain, to choose and analyse

whether the particular cluster is suitable for their computation needs or not (R1).

Matrix multiplication does not follow the expected results. This can be mainly because of the

speedup obtained during the computation. As seen in Figure 7.2 the computation time of the algorithm

reduces to a great extend when more computation power is provided. Due to this reason, even though

energy consumption of the cluster increases due to increase in a computing node, the resulting speedup

can help compensate for it. Researchers can use this conclusion to predict the cluster configuration

where the energy consumption is no longer compensated by the speedup. This can result in many

interesting conclusions.

7.5 Limitations

This section lists some limitations of FEPAC

1. Support for Workloads

Workload is the ability of the system to handle and process work. The work presented and

evaluated in this thesis supports execution of algorithms and automatic configuration of clusters.

These are the lowest forms of workloads and the system currently have not been evaluated to

support complex workloads used by other researchers.

2. Support for scientific workflows

Workflows is a group of instructions that can be executed to achieve a certain objective. FEPAC

can be called a very simplistic pseudo-workflow engine which contains instruction on evaluation

of clusters and executions of algorithm. As the configuration files is needed to be provided by

the researcher, the system will never be truly a workflow engine. Instead, the system can be

developed to support other workflows used in other fields.

3. Container based Execution

Even though the system is designed with the requirement of minimal installation steps, there can

arise situations where the system can work in some environment but might give error in another.

This is the limitation of the system and can be overcome by running it through a container.

Containers are complete packages developed with their own set of dependencies. Therefore

there will not be any compatibility issues when developing the system in such manner.

7.5. LIMITATIONS 75

4. Support for Graphical Processing Units

Graphical Processing Units or GPUs work in similar manner as to that or a computer. They

have their own computing cores and share a common memory. GPUs carry out symmetric

multiprocessing in which all the processes work together to perform certain computation. No

process is reserved for any special purpose and hence it would be interesting to apply our

system on such architectures. The data provided by experiments conducted on GPUs can help

in developing more energy efficient GPUs or perform other analysis on its workings. This is a

limitation in current scenario as the computing nodes used to evaluate the system do not posses

the GPU capabilities.

5. Predictive model for identification of trends and analysis of data

The system developed in this thesis provides a way for researcher to automatically execute

algorithms and configure clusters. The results are then provided to the researchers. The system

does not provide any of its own suggestions and therefore the interpretation of data can differ

from one person to another. This is a limitation of the system as the data is then open to bias and

can be wrongfully interpreted.

6. Inter-node communication

The work presented in this thesis presents a system in which the communication and synchro-

nisation is only done between the master and the slave nodes. This increases the time spent in

communication. Facilitating inter-node communication so that the nodes synchronise themselves

with each other and only communicate with master node for the results can lead to increase

performance and reduced computation times. This is a purely academic ideas and the lack of

knowledge for developing a system than can handle such processing is a limitation for this thesis.

Chapter 8

CONCLUSION

This chapter presents the conclusions of the thesis. Section 8.1 contains an overview of the thesis.

reviewing the key-points of each of the chapters. The main contributions of the work presented in this

thesis are discussed in Section 8.2. Section 8.3 discusses potential future work and expansion on the

work presented in this thesis. Finally, Section 8.4 includes some concluding remarks.

8.1 Overview of Thesis

This thesis has described and evaluated a generic framework for evaluation of parallel algorithms on

different cluster configurations. Chapter 1 provides an introduction to the whole thesis. The chapter

introduced the field of parallel computing and shows that energy consumption is one of the challenges

faced while achieving high performance computing. The chapter argues that the use of single board

computers in computing can solve this challenge due to their low power consumption. It was also

shown that the traditional methods of evaluation did not focus on energy consumption of a computation.

In conclusion, it was argued that there was a requirement for a new evaluation method for parallel

computing which focused more on energy consumption and factors affecting it.

Chapter 2 presented the background in the field of parallel computing. The hardware and software

aspects of parallel computing have been discussed. The chapter also presents a discussion of the

state of the art in the field of experimental computing and energy aware cluster computing. State

of the art in the field showed that although researchers have accepted energy as a concern in high

performance computing, the research in this field is stunted because of the lack of evaluation method

which focuses on the energy consumption. The chapter also shows that the current methods of

evaluation of computing focus heavily on the performance and ways on how to improve performance.

The chapter concluded by commenting on the lack of a framework to evaluate energy consumption in

parallel and that this would motivate further research in the field.

Chapter 3 presented a discussion of research questions which were devised from the open issues

found in the literature. The chapter presented the methodological approach adopted for finding the

solutions to the research questions. It compared the strategies adopted by researchers in similar fields
76

8.2. CONTRIBUTIONS 77

and provided a justification for the approach undertaken to achieve the objectives of this research.

The chapter concluded with a list of requirements for the system that will help achieve the research

questions.

Chapter 4 presented an abstract idea which would help in finding the solution to the research

questions. The idea was developed to meet the requirements and provided a generic outline of the

features and functionalities that needs to be achieved by the system in order to be able to find solution

to the research problems.

Chapter 5 presented FEPAC as a generic framework for evaluating parallel computation with focus

on energy consumption. The chapter documented the two-fold implementation required to achieve the

final goal. One being the implementation of a hardware cluster and second being that of a software

framework. The implementation is built using the abstract idea developed in previous chapters.

To illustrate that FEPAC achieves the requirements and helps in answering the research questions,

Chapter 6 applied qualitative and quantitative evaluation approaches on the implemented design.

Qualitative evaluation concluded that the system designed met the requirements set out in previous

chapters whereas quantitative evaluation helped in understanding the workings and functionalities

of the system. To achieve the quantitative evaluation FEPAC was used to execute three different

algorithms, Matrix Multiplication, OpenCV and Kmeans. The main focus of using FEPAC on these

algorithms was to draw conclusion based on results and to showcase the relevance of the designed

system to the research questions of this thesis. The conclusions of the chapter were that FEPAC had

effectively meet the system requirements and can quantitatively justify that it can provide answer to

the research questions.

Chapter 7 presented a discussion of the results found during the evaluation of FEPAC. This chapter

included an in-depth analysis of the framework and its relevance to the research questions. High level

functionalities of the designed system are discussed and justified using quantitative data. The chapter

concludes with a list of limitations identified during the evaluation and discussion of the proposed

system.

8.2 Contributions

High quality scientific contributions of this thesis are presented in this section.

Literature review in the field of parallel computing

A major contribution of this thesis is the derivation of research gaps found in the field of high

performance computing based on a comprehensive analysis of state of the art in parallel and cluster

computing. The research gaps found were the need for energy aware computing, the lack of research

focusing on the energy consumption of a computation, the lack of motivation for research in the similar

field and the need for a generic programming model for evaluation of computing which focuses on

energy. The thesis aims to address these research questions and provide solution for them.

78 CHAPTER 8. CONCLUSION

Design of a Framework for evaluating parallel algorithms

The thesis aims to tackle the research questions in Chapter 2 by developing a framework, namely

FEPAC, that evaluates different parallel algorithms on different cluster configuration and provide the

researchers with a comparative cost-performance analysis of the algorithm. The framework focuses on

energy consumption of the cluster and aims to motivate researchers to use or develop a more energy

efficient algorithm or method of computation respectively. This thesis has presented the design of a

flexible software framework which supports wide range of configurations and parameters. An in-depth

evaluation of FEPAC on an implementation of a eight node single board computer cluster was then

used to illustrate the potential of the framework.

Evaluation of the Framework using qualitative and quantitative means

Extensive evaluation on FEPAC by-using both qualitative and quantitative analysis is performed. The

framework is evaluated by discussing its qualitative aspects and how they align with the thesis’s goals.

It is also evaluated by comparison of the data collected from executing 3 real-world algorithms on

different cluster architectures. The evaluation results show the relevance of the proposed model with

respect to the research gaps found in Chapter 2 and confirms the significance of this work in Chapter 7.

The evaluation contributes majorly in terms of the functionality provided by the framework and how

they can help in answering the research questions.

High quality ready-to-submit research paper is prepared

A high quality research paper related to the work presented in this thesis has been prepared and will

be submitted to the AusPDC 2021 conference. AusPDC 2021 is a conference as part of the 2021

Australasian Computer Science Week (ACSW).

8.3 Future Work

In this thesis, the need for a framework which evaluates different cluster configurations is investigated.

The workings of the framework is shown by running it on a 8 node RPi3B+ cluster. The work presented

in this thesis can be expanded in a number of different ways and some of the future plans to enhance

the research in the field is documented in this section.

8.3.1 Expansion to real-world workloads

Workloads are defined as a computer system’s ability to handle and process work. The work presented

in this thesis addresses smaller workloads in terms of algorithms and their execution. This can further

be expanded by providing an functionality to be able to handle actual real-world workloads. Scientific

workflows and container-based computing executions are some of the workloads that can be focused

on in the future.

8.3. FUTURE WORK 79

Scientific Workflows

A scientific Workflow is the description of a process for accomplishing a scientific objective. It

includes a list of tasks or dependencies which are mainly used for scientific simulations or data analysis.

Scientific Workflows are being used in computation field to easily express multi-step computational

tasks. The work presented in this thesis can be expanded to include support for workflow algorithm.

Workflow algorithm make use of different algorithms to perform higher level tasks. The expanded

work can then help in analysis of the energy consumption of different workflows and parameters

affecting it.

Container-based Computing Execution

Container based computation are being used in almost all parts of computations. Container is defined

as an entire run-time environment on its own. It includes all the execution code and its dependencies

in a single package. It allows the execution to occur quickly and reliably. As all the dependencies

are already included in the software package there is no compatibility issues while working with

container-based executions. The work presented in this thesis can be expanded to include evaluation of

Container-based Executions. This will facilitate a wide range of experiments to be conducted on the

containers and their results being used to suggest improvements in the containers.

8.3.2 Cluster Improvements

Upgrading the cluster to use RPi 4B

RPi4B is the newer generation of SBC developed by Raspberry Pi foundation which features significant

improvement in hardware as well as computation. Some benchmarks have already been done on RPi4

which suggest improvements in its computation power as well as being energy efficient 2.2. RPi4B has

4 different model with different memory – 1GB, 2GB, 4GB and 8GB. RPi4B has the same footprint

as the 3B+, so this would mean minimal changes to the way the clusters are setup. The framework

was designed to be compatible with different architectures and hence there won’t be any changes

needed to be made to the framework. During the writing of this thesis, only stable OS for RPi4 has

been Raspbian buster and LibreELEC. Both of them are heavy weight OS and won’t provide the best

performance from the SBC. The main worry while using the RPi4 is the heat generation, the costs for

cooling and corruption of the the boot memory (which is highly unstable). Many dependent computing

libraries also do not support RPi4 yet. If these issues are resolved then RPi4B could be the next step in

gaining more performance while being energy efficient.

Implementing inter-node communication for faster computation

The current system is a master-slave configuration where all the communication and final computation

is handled by the master node. The slave nodes only perform the computation that the master node

requests. A possible improvement to this topology can be to implement inter-node communication to

80 CHAPTER 8. CONCLUSION

reduce the overheads of relaying data back and forth from the master. This implementation can lead to

improvement or deterioration of performance based on the way the algorithm handles communication.

With comparisons to the algorithms evaluated in this thesis, it can be predicted that Kmeans algorithm

will have a highly degraded performance when ran using this cluster setup.

8.3.3 Framework Improvement

Powering nodes as per requirements

The ideal nodes in the current system are running in the background. The power consumption for these

nodes have not been included in the thesis as they were powered off manually when not needed. The

framework can be improved by providing it with the ability to power on and off the nodes based on

the demand for computing. This may improve the energy efficiency of the cluster as whole and might

provide different performance based on the latency of the nodes being powered on and off.

Expanding the domain of algorithms to be tested

A framework that can perform detailed computing using the parameters given and analysis of the

data is provided in this thesis. The work presented in this thesis can be expanded by including a case

study comparing results of algorithms from similar domains or algorithms from different domains.

For example - similar domain (arithmetic) could be matrix multiplication, sorting algorithms, finding

accuracy of a calculation, etc. Different domain could include image processing, cryptography,

compression, Artificial Intelligence, Machine Learning, video processing, etc.

Implementing a predictive model and better analysis based on the data

The current proposed system provides the computation data to the user and the analysis is totally up-to

the user. They can interpret the results however they want. This manual work could be automated by

providing a set input to the framework and using machine learning modules to learn from previous

results in similar domain or the similar algorithms to provide a predictive response based on the

need of the user. This can also be improved to include in-depth analysis of the bottlenecks of the

framework and explaining to the user how to overcome them or to show how these bottlenecks affect

the performance.

Another improvement can be to include the analysis of relation between energy and performance.

How does the energy relate to the performance for a particular algorithm or a cluster configuration.

For example, an analysis model can be implemented which focuses on over-volting of the nodes in the

cluster. As described in 2.2.1 over-volting is one situation where a processor can provide improved

performance for increased power provided to it. It will be interesting to check the relation between this

increased speed and energy and how do they relate to each other in different scenarios. Such analysis

provide in-depth understanding of the trade-offs between energy and performance.

8.4. CONCLUDING REMARKS 81

What are the trade-offs between energy and performance? Does the performance increase or

decrease for different energy supply to the cluster? How does the performance compare with the initial

cost of developing, implementing and running the cluster? Is the return of investment worth it?

Other analysis from the financial point of view can be provided. This mainly could comprise of the

initial cost of developing, implementing and running the cluster and what is the return of investment

for the same. The results can be compared with the costs of running the similar experiments on already

established infrastructure like Amazon Web Services. The later could save a researcher the initial cost

of setup but could lead to increased cost of hiring the infrastructure and reduced performance.

8.4 Concluding Remarks

With the increasing demands for high performance computing, more and more infrastructures are

developed with the focus on providing the computing resources needed. This is currently being

performed by a mixture of highly energy inefficient and often very expensive high performance

infrastructures. Single board computers offer potential to revolutionise the field of high performance

computing by offering a low-power, low cost and highly-programmable alternative.

The evaluation of the current state of the art in the field of parallel computing presented in this

thesis has argued that the lack of a generic programming support for evaluation of clusters based on

their energy consumption is harming the motivation for research and development in the field of Energy

aware computing. This problem is both hardware and software related. Low cost and low energy

consumption are hardware related issues whereas software that facilitates evaluation of computations

based on their energy is a software related issue. Research focusing on energy consumption of a

computation have been performed by other researchers by using single board computers. It has been

shown that computation achieved through embedded processors do not provide the raw numerical

power comparable to that of any established infrastructures. It has also been argues that they such

computations are amazingly low cost and when compared using their cost and energy consumption,

these embedded processors can prove to be an effective alternative to that of high performance

computing infrastructures.

This thesis has demonstrated that it is possible to design and implement a framework supporting

the evaluation of parallel computation based on a number of factors including its energy consumption

and performance. It also stipulates that single board computers are the future of low-energy high

performance computing. It is the author’s hope that research such as the one presented in this thesis

will contribute to the evolution of the Energy-aware Computing field.

Bibliography

Akram, A. (2017). A Study on the Impact of Instruction Set Architectures on Processor’s Performance.

PhD thesis, Western Michigan University.

Alghamdi, T. and Alaghband, G. (2020). High performance parallel sort for shared and distributed

memory mimd. arXiv preprint arXiv:2003.01216.

Aroca, R. V. and Gonçalves, L. M. G. (2012). Towards green data centers: A comparison of x86 and

arm architectures power efficiency. Journal of Parallel and Distributed Computing, 72(12):1770–

1780.

Balakrishnan, N. (2012). Building and benchmarking a low power arm cluster. Master’s thesis,

University of Edinburgh.

Barney, B. et al. (2010). Introduction to parallel computing. Lawrence Livermore National Laboratory,

6(13):10.

Basford, P. J., Johnston, S. J., Perkins, C. S., Garnock-Jones, T., Tso, F. P., Pezaros, D., Mullins, R. D.,

Yoneki, E., Singer, J., and Cox, S. J. (2020). Performance analysis of single board computer clusters.

Future Generation Computer Systems, 102:278–291.

Berman, K. A. and Paul, J. (1996). Fundamentals of sequential and parallel algorithms. PWS

Publishing Co.

Blem, E., Menon, J., and Sankaralingam, K. (2013). Power struggles: Revisiting the risc vs. cisc

debate on contemporary arm and x86 architectures. In 2013 IEEE 19th International Symposium on

High Performance Computer Architecture (HPCA), pages 1–12. IEEE.

Buytaert, K. (2000). The openmosix howto.

Calheiros, R. N., Ranjan, R., Beloglazov, A., De Rose, C. A., and Buyya, R. (2011). Cloudsim: a

toolkit for modeling and simulation of cloud computing environments and evaluation of resource

provisioning algorithms. Software: Practice and experience, 41(1):23–50.

Chai, J. S. and Bose, A. (1993). Bottlenecks in parallel algorithms for power system stability analysis.

IEEE Transactions on Power Systems, 8(1):9–15.
82

BIBLIOGRAPHY 83

Cloutier, M. F., Paradis, C., and Weaver, V. M. (2016). A raspberry pi cluster instrumented for

fine-grained power measurement. Electronics, 5(4):61.

Conejero, J., Rana, O., Burnap, P., Morgan, J., Caminero, B., and Carrión, C. (2016). Analyzing

hadoop power consumption and impact on application qos. Future Generation Computer Systems,

55:213–223.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2009). Introduction to algorithms. MIT

press.

Davidson, J. C. (1965). Clock system for electronic computers. US Patent 3,226,648.

Diwedi, D. V. and Sharma, S. J. (2018). Development of a low cost cluster computer using raspberry

pi. In 2018 IEEE Global Conference on Wireless Computing and Networking (GCWCN), pages

11–15. IEEE.

d’Amore, M., Baggio, R., and Valdani, E. (2015). A practical approach to big data in tourism: a low

cost raspberry pi cluster. In Information and Communication Technologies in Tourism 2015, pages

169–181. Springer.

Feller, E., Ramakrishnan, L., and Morin, C. (2015). Performance and energy efficiency of big data

applications in cloud environments: A hadoop case study. Journal of Parallel and Distributed

Computing, 79:80–89.

Flynn, M. J. (1966). Very high-speed computing systems. Proceedings of the IEEE, 54(12):1901–1909.

Fraenkel, J. R., Wallen, N. E., and Hyun, H. H. (1993). How to design and evaluate research in

education, volume 7. McGraw-Hill New York.

Gibbons, A. and Rytter, W. (1989). Efficient parallel algorithms. Cambridge University Press.

Hillis, W. D. and Steele Jr, G. L. (1986). Data parallel algorithms. Communications of the ACM,

29(12):1170–1183.

Iserte, S., Castelló, A., Mayo, R., Quintana-Ortı́, E. S., Silla, F., Duato, J., Reaño, C., and Prades,

J. (2014). Slurm support for remote gpu virtualization: Implementation and performance study.

In 2014 IEEE 26th International Symposium on Computer Architecture and High Performance

Computing, pages 318–325. IEEE.

JéJé, J. (1992). An introduction to parallel algorithms. Reading, MA: Addison-Wesley.

Jin, C., de Supinski, B. R., Abramson, D., Poxon, H., DeRose, L., Dinh, M. N., Endrei, M., and Jessup,

E. R. (2017). A survey on software methods to improve the energy efficiency of parallel computing.

The International Journal of High Performance Computing Applications, 31(6):517–549.

Kaur, T. and Chana, I. (2015). Energy efficiency techniques in cloud computing: A survey and

taxonomy. ACM computing surveys (CSUR), 48(2):1–46.

84 BIBLIOGRAPHY

Kecskemeti, G., Hajji, W., and Tso, F. P. (2017). Modelling low power compute clusters for cloud

simulation. In 2017 25th Euromicro International Conference on Parallel, Distributed and Network-

based Processing (PDP), pages 39–45. IEEE.

Krish, K., Iqbal, M. S., Rafique, M. M., and Butt, A. R. (2014). Towards energy awareness in hadoop.

In 2014 Fourth International Workshop on Network-Aware Data Management, pages 16–22. IEEE.

Markovic, D., Vujicic, D., Mitrovic, D., and Randic, S. (2018). Image processing on raspberry pi

cluster. International Journal of Electrical Engineering and Computing, 2(2):83–90.

Moore, G. E. et al. (1965). Cramming more components onto integrated circuits.

Nunez, A., Vazquez-Poletti, J. L., Caminero, A. C., Carretero, J., and Llorente, I. M. (2011). Design of

a new cloud computing simulation platform. In International Conference on Computational Science

and Its Applications, pages 582–593. Springer.

Onwuegbuzie, A. J., Leech, N. L., and Collins, K. M. (2010). Innovative data collection strategies in

qualitative research. Qualitative Report, 15(3):696–726.

Onwuegbuzie, A. J., Leech, N. L., and Collins, K. M. (2012). Qualitative analysis techniques for the

review of the literature. Qualitative Report, 17:56.

Pahl, C., Helmer, S., Miori, L., Sanin, J., and Lee, B. (2016). A container-based edge cloud paas

architecture based on raspberry pi clusters. In 2016 IEEE 4th International Conference on Future

Internet of Things and Cloud Workshops (FiCloudW), pages 117–124. IEEE.

Papakyriakou, D., Kottou, D., and Kostouros, I. (2018). Benchmarking raspberry pi 2 beowulf cluster.

International Journal of Computer Applications, 975:8887.

Patel, S., Potdar, M., and Gohil, B. (2015). A survey on image processing techniques with openmp.

International Journal of Engineering Development and Research, 3(4):837–839.

Patton, M. Q. (2014). Qualitative research & evaluation methods: Integrating theory and practice.

Sage publications.

Pomaska, G. (2019). Stereo vision applying opencv and raspberry pi. International Archives of the

Photogrammetry, Remote Sensing & Spatial Information Sciences.

Qureshi, B. and Koubaa, A. (2017). Power efficiency of a sbc based hadoop cluster. In International

Conference on Smart Cities, Infrastructure, Technologies and Applications, pages 52–60. Springer.

Rahmat, R. F., Saputra, T., Hizriadi, A., Lini, T. Z., and Nasution, M. K. (2019). Performance test of

parallel image processing using open mpi on raspberry pi cluster board. In 2019 3rd International

Conference on Electrical, Telecommunication and Computer Engineering (ELTICOM), pages 32–35.

IEEE.

BIBLIOGRAPHY 85

Rauber, T. and Rünger, G. (2013). Parallel programming. Springer.

Saffran, J., Garcia, G., Souza, M. A., Penna, P. H., Castro, M., Góes, L. F., and Freitas, H. C. (2016). A

low-cost energy-efficient raspberry pi cluster for data mining algorithms. In European Conference

on Parallel Processing, pages 788–799. Springer.

Scacchi, W. (2002). Understanding the requirements for developing open source software systems.

IEE Proceedings-Software, 149(1):24–39.

Schot, N. (2015). Feasibility of raspberry pi 2 based micro data centers in big data applications. In

Proceedings of the 23th University of Twente Student Conference on IT, Enschede, The Netherlands,

volume 22.

Srinivasan, K., Chang, C.-Y., Huang, C.-H., Chang, M.-H., Sharma, A., and Ankur, A. (2018). An

efficient implementation of mobile raspberry pi hadoop clusters for robust and augmented computing

performance. Journal of Information Processing Systems, 14(4).

Suresh, L., Loff, J., Kalim, F., Narodytska, N., Ryzhyk, L., Gamage, S., Oki, B., Lokhandwala, Z.,

Hira, M., and Sagiv, M. (2019). Automating cluster management with weave.

Tiwari, N., Bellur, U., Sarkar, S., and Indrawan, M. (2016). Identification of critical parameters for

mapreduce energy efficiency using statistical design of experiments. In 2016 IEEE International

Parallel and Distributed Processing Symposium Workshops (IPDPSW), pages 1170–1179. IEEE.

Tso, F. P., White, D. R., Jouet, S., Singer, J., and Pezaros, D. P. (2013). The glasgow raspberry pi cloud:

A scale model for cloud computing infrastructures. In 2013 IEEE 33rd International Conference on

Distributed Computing Systems Workshops, pages 108–112. IEEE.

Xu, R. and Wunsch, D. (2005). Survey of clustering algorithms. IEEE Transactions on neural networks,

16(3):645–678.

Yoo, A. B., Jette, M. A., and Grondona, M. (2003). Slurm: Simple linux utility for resource

management. In Workshop on Job Scheduling Strategies for Parallel Processing, pages 44–60.

Springer.

Zargham, M. R. (1996). Computer architecture: single and parallel systems. Prentice-Hall, Inc.

Appendix A

CONFIGURATION FILE

"__comment": "Configuration file for FEPAC",

"app": {

"__comment1": "NodeJS code",

"port": 8000,

"master_node_ip": "192.168.50.220",

"folder_location_on_nodes": "~/Honours_Framework",

"max_nodes": 7,

"max_threads": 4,

"__comment2": "Following is used for testing purposes.

Fill this to overwrite the data file usage.

Default: Name of algorithm.",

"data_file": null,

"start_node": null,

"start_thread": null

},

"plotly": {

"uname": "mwarade",

"api": "0KshuW2zDgDRh6Nm3mlp"

},

"switch_telnet": {

"__comment": "Telent credentials for connecting to Netgear Switch GS110TP",

"IP": "192.168.50.150",

"port": 60000,

"login": "admin",

"password": "password",

"interval_to_call": 1000

},

86

87

"db": {

"__comment": "Local mysql database credentials",

"host": "localhost",

"user": "root",

"password": "qazwsxedc",

"db_name": "mytestdb"

},

"algorithm": {

"hostfile_folder": "algorithms/hostfile",

"matrix_multiplication": {

"__comment": "All paths should be relative.

Create a data file by algorithm name

at /logs/*.json",

"language": "python3",

"dependency": "mpi4py numpy",

"command": "python3 algorithms/matrix_multiplication/matrixmultiplication.py",

"__comment1":"Put is_output true if you have any SINGLE line output from the code",

"is_output":true

},

"kmeans_c": {

"__comment": "All paths should be relative.

Create a data file by algorithm name

at /logs/*.json",

"language": "C",

"dependency": "GCC",

"command": "./algorithms/kmeans_c/kmeans_c.exe",

"file_path": "algorithms/kmeans_c/kmeans_c.exe",

"__comment1":"Put is_output true if you have any SINGLE line output from the code",

"is_output":true

}

}

Appendix B

MATRIX MULTIPLICATION: RAW DATA

AND CALCULATIONS

Watt-hr calculations are done as follows:

Watt-hr = [(Total Watt)/3600] * (Total Time)

Cluster

Architecture
Time to

compute (s)

Power Consumption

(Watt) Watt-hr

node threads master slave 1 slave 2 slave 3 slave 4 slave 5 total

2 1 702.49 3.98 4.17 0 0 0 0 8.14 1.59

2 2 269.74 4.21 4.87 0 0 0 0 9.07 0.68

2 3 219.51 4.48 4.70 0 0 0 0 9.18 0.56

2 4 182.58 4.63 5.01 0 0 0 0 9.64 0.49

2 5 190.42 4.60 4.84 0 0 0 0 9.44 0.50

2 6 160.91 5.14 5.67 0 0 0 0 10.81 0.48

2 7 166.20 4.82 5.16 0 0 0 0 9.98 0.46

2 8 180.32 4.71 5.12 0 0 0 0 9.82 0.49

2 9 184.52 4.63 5.11 0 0 0 0 9.74 0.50

2 10 182.10 4.63 5.11 0 0 0 0 9.75 0.49

2 11 181.42 4.62 5.15 0 0 0 0 9.76 0.49

2 12 178.01 4.60 5.18 0 0 0 0 9.77 0.48

3 1 361.03 3.74 4.09 4.03 0 0 0 11.86 1.19

3 2 167.55 4.16 4.70 4.39 0 0 0 13.25 0.62

3 3 139.26 4.46 4.69 4.48 0 0 0 13.62 0.53

3 4 119.55 4.63 4.91 4.72 0 0 0 14.27 0.47

3 5 120.72 4.64 4.94 4.68 0 0 0 14.26 0.48

3 6 118.17 4.91 5.39 5.13 0 0 0 15.43 0.51

88

89

3 7 123.42 4.59 5.08 4.84 0 0 0 14.51 0.50

3 8 118.25 4.58 5.13 4.75 0 0 0 14.46 0.47

3 9 123.45 4.55 5.04 4.70 0 0 0 14.29 0.49

3 10 123.18 4.58 5.09 4.69 0 0 0 14.36 0.49

3 11 124.31 4.58 5.09 4.69 0 0 0 14.36 0.50

3 12 119.28 4.60 5.08 4.75 0 0 0 14.43 0.48

4 1 231.75 3.98 4.19 3.99 4.07 0 0 16.23 1.05

4 2 112.48 4.46 4.88 4.61 4.79 0 0 18.74 0.59

4 3 90.84 4.72 4.96 4.65 4.86 0 0 19.19 0.48

4 4 79.93 4.87 5.09 4.87 5.01 0 0 19.84 0.44

4 5 84.40 4.81 5.10 4.79 4.86 0 0 19.56 0.46

4 6 90.99 4.51 4.94 4.60 5.13 0 0 19.19 0.49

4 7 92.72 4.60 4.94 4.68 4.96 0 0 19.18 0.49

4 8 96.02 4.57 4.99 4.68 4.94 0 0 19.18 0.51

4 9 97.43 4.53 5.04 4.63 4.97 0 0 19.18 0.52

4 10 96.82 4.57 5.07 4.71 4.96 0 0 19.31 0.52

4 11 90.41 5.05 5.98 5.07 5.19 0 0 21.29 0.53

4 12 99.44 4.57 5.08 4.67 4.92 0 0 19.24 0.53

5 1 176.05 3.97 4.19 4.00 4.01 3.90 0 20.07 0.98

5 2 80.82 4.67 5.05 4.86 4.88 4.88 0 24.34 0.55

5 3 61.10 5.27 5.53 4.99 5.69 5.62 0 27.11 0.46

5 4 71.28 5.00 5.21 4.81 5.16 5.28 0 25.46 0.50

5 5 78.23 4.90 5.01 4.71 5.05 4.98 0 24.64 0.54

5 6 107.52 4.41 4.97 4.49 4.81 4.71 0 23.40 0.70

5 7 109.10 4.71 5.58 4.90 5.02 5.02 0 25.23 0.76

5 8 108.05 4.61 5.49 4.84 4.98 4.98 0 24.89 0.75

5 9 108.80 4.55 5.33 4.76 4.90 4.93 0 24.48 0.74

5 10 110.65 4.60 5.32 4.81 4.86 4.89 0 24.48 0.75

5 11 108.90 4.65 5.27 4.79 4.89 4.88 0 24.48 0.74

5 12 117.19 4.61 5.29 4.79 4.94 4.93 0 24.56 0.80

6 1 142.88 3.88 4.02 3.95 3.97 3.94 4.02 23.78 0.94

6 2 75.07 4.45 4.99 4.41 4.69 4.67 4.88 28.09 0.59

6 3 62.81 4.58 4.83 4.44 4.96 5.03 5.10 28.94 0.50

6 4 63.74 4.57 4.88 4.54 4.88 4.86 4.89 28.63 0.51

6 5 66.96 4.82 4.87 4.58 4.87 4.84 4.83 28.80 0.54

6 6 95.46 4.44 5.01 4.59 4.77 4.84 4.96 28.62 0.76

6 7 95.46 4.47 5.10 4.64 4.72 4.78 4.72 28.43 0.75

90 APPENDIX B. MATRIX MULTIPLICATION: RAW DATA AND CALCULATIONS

6 8 97.17 4.49 5.22 4.71 4.80 4.83 4.78 28.83 0.78

6 9 103.12 4.51 5.29 4.77 4.88 4.82 4.77 29.03 0.83

6 10 96.57 4.58 5.35 4.80 4.91 4.89 4.88 29.39 0.79

6 11 100.32 4.56 5.35 4.82 4.92 4.84 4.78 29.28 0.82

6 12 91.90 4.57 5.29 4.84 4.84 4.84 4.81 29.19 0.75

Table B.1: Raw Data Output of Matrix Multiplication Algo-

rithm

Appendix C

OPENCV ALGORITHM: RAW DATA

#
Cluster

Architecture
Energy Consumption

(watt-hr)
Total Time

(s)
0 node:1 thread:2 0.067 49.7

1 node:1 thread:3 0.058 38.1

2 node:1 thread:4 0.059 38.6

3 node:2 thread:1 0.110 50.3

4 node:2 thread:2 0.092 34.8

5 node:2 thread:3 0.092 30.6

6 node:2 thread:4 0.098 31.7

7 node:3 thread:1 0.128 38.2

8 node:3 thread:2 0.113 29.1

9 node:3 thread:3 0.120 28.2

10 node:3 thread:4 0.145 34.0

11 node:4 thread:1 0.196 42.5

12 node:4 thread:2 0.146 28.0

13 node:4 thread:3 0.184 32.2

14 node:4 thread:4 0.233 40.8

15 node:5 thread:1 0.218 39.7

16 node:5 thread:2 0.172 27.0

17 node:5 thread:3 0.213 31.7

18 node:5 thread:4 0.277 40.3

19 node:6 thread:1 0.280 41.2

20 node:6 thread:2 0.222 28.9

21 node:6 thread:3 0.304 38.1

22 node:6 thread:4 0.353 43.2

23 node:7 thread:1 0.306 38.5

91

92 APPENDIX C. OPENCV ALGORITHM: RAW DATA

Table C.1 continued from previous page
24 node:7 thread:2 0.356 36.9

25 node:7 thread:3 0.507 51.5

Table C.1: Raw Data Output of OpenCV Filtering Algorithm

Appendix D

KMEANS ALGORITHM: RAW DATA

Architecture
Energy consumption

(watt-hr)
total time

(s)
0 node:1 thread:2 0.040 36.6

1 node:1 thread:3 0.035 29.7

2 node:1 thread:4 0.035 28.0

3 node:2 thread:1 0.080 38.6

4 node:2 thread:2 0.051 22.1

5 node:2 thread:3 0.042 18.1

6 node:2 thread:4 0.051 20.7

7 node:3 thread:1 0.088 28.9

8 node:3 thread:2 0.073 21.5

9 node:3 thread:3 0.175 48.0

10 node:3 thread:4 0.155 41.5

11 node:4 thread:1 0.101 25.2

12 node:4 thread:2 0.167 37.2

13 node:4 thread:3 0.352 73.7

14 node:4 thread:4 0.264 54.9

15 node:5 thread:1 0.138 27.9

16 node:5 thread:2 0.285 51.6

17 node:5 thread:3 0.309 52.3

18 node:5 thread:4 0.431 70.9

Table D.1: Raw Data Output of Kmeans Algorithm

93

Appendix E

ADDITION OF NEW FUNCTIONALITY

THROUGH CODE (USING PLOTLY)

94

95

var watthr = {

x: x_axis,

y: watt_hr,

name: "watt-hr",

type: "scatter"

};

var timea = {

x: x_axis,

y: time,

name: "total_time",

yaxis: "y2",

type: "scatter"

};

var com_timea = {

x: x_axis,

y: output,

name: "algorithm_output",

yaxis: "y2",

type: "scatter"

};

var data = [watthr, timea, com_timea];

var layout = {

title: algo_name,

yaxis: { title: "Energy consumption (Wh)" },

yaxis2: {

title: "Time (sec)",

// title: "milliseconds",

overlaying: "y",

side: "right"

}

};

var graphOptions = { layout: layout, filename: algo_name, fileopt: "overwrite" };

plotly.plot(data, graphOptions, async function (err, msg) {

if (err) return console.log(err);

await console.log(chalk.magenta(’\n

The graph is available at:’,chalk.underline.yellow(msg.url)));

await functions.spinnerStop();

});

Appendix F

PLOTLY DASHBOARD WITH THE DATA

FROM THE FRAMEWORK

96

	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Definitions of terms
	List of Abbreviations
	Introduction
	Research Questions
	Contributions
	Thesis Structure

	Background
	Methodology for literature review
	Hardware
	Processors
	Memory
	Cluster computing
	Single Board computers
	Summary

	Software
	Operating System
	Inter-node communication interface (MPI)
	Storage Framework
	Job Schedulers
	Computing Libraries
	Parallel Algorithms
	Summary

	Related Work
	Experimental Cluster Computing
	Energy Aware Cluster Computing
	Related work in benchmarking and evaluating clusters

	Open Issues/ Gaps
	Summary

	Methodology
	Research questions
	Paradigm
	Data Collection
	Validity and Reliability of Data
	Data Analysis Strategy
	Requirements
	Summary

	Design
	Cluster
	Framework
	User Responsibilities
	Framework Functionalities

	Summary

	Implementation
	Implementation of Computing Cluster
	Node Computer
	Retrieving Energy consumption values
	Cluster Setup
	Final Setup

	Implementation of Framework
	Framework language
	Configuration file
	Development of Individual Functionality
	Final Setup

	Summary

	Evaluation
	Qualitative Evaluation
	Quantitative Evaluation
	Multiple run of single experiment on different cluster configuration
	Multiple run of single experiment with different data-set
	Expansion on the functionality of the designed system
	Algorithm Evaluation: Matrix Multiplication
	Algorithm Evaluation: Kmeans
	Algorithm Evaluation: OpenCV filtering

	Summary

	Discussion
	Helping researchers in deciding best optimal node for computing
	Finding relationship between data set and energy
	Helping researchers in predicting the computation time for an algorithm
	Helping researchers in predicting the energy consumption of the cluster
	Limitations

	Conclusion
	Overview of Thesis
	Contributions
	Future Work
	Expansion to real-world workloads
	Cluster Improvements
	Framework Improvement

	Concluding Remarks

	Bibliography
	Configuration File
	Matrix Multiplication: Raw Data and Calculations
	OpenCV Algorithm: Raw Data
	Kmeans Algorithm: Raw Data
	Addition of new functionality through code (Using Plotly)
	Plotly Dashboard with the data from the framework

