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ABSTRACT
For many years, computer scientists have explored the computing
power of so-called computing clusters to address performance
requirements of computationally intensive tasks. Historically,
computing clusters have been optimized with run-time
performance in mind, but increasingly energy consumption has
emerged as a second dimension that needs to be considered when
optimizing cluster configurations. However, there is a lack of
generally available tool support to experiment with cluster and
algorithm configurations in order to identify “sweet-spots” with
regards to both, run-time performance and energy consumption,
respectively. In this work, we are introducing FEPAC, a framework
for the automated evaluation of parallel algorithms on different
cluster architectures and different deployments of software
processes to hardware nodes, allowing users to explore the impact
of different configurations on run-time properties of their
computations. As proof of concept, the utility of the framework is
demonstrated on a custom-built Raspberry Pi 3B+ cluster using
different types of parallel algorithms as benchmarks.
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1 INTRODUCTION
Data driven technologies are demanding increasingly complex
analysis and management to produce effective results. As
predicted by Moore’s law [19], advances in processors and
technology has led to increased performance of modern hardware.
Algorithms are used to reduce the manual work and effectively
utilise the ever-growing computer technologies to their full extent.
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Newer technologies and advancements led to exponential growth
in the amount of data that needed processing [3].

Parallel processing allows computation to be performed faster
by utilising a number of processors concurrently [10]. Parallel
computing provides us with the technology and means to achieve
the ever-increasing demands of computing. Clusters are designed
with performance in mind which has led to the creation of huge
data centres that have heightened the energy demand [12]. Energy
consumption is one of the top challenges for the next generation
of super-computing [11], but it is difficult for a researcher to
determine the optimal configuration of cluster in terms of
performance and energy, respectively. A challenge in the field of
parallel computing is the lack of an evaluation method which
focuses on energy consumption and the factors influencing it.

Clusters are expensive and difficult to experiment with and thus
it remains difficult to optimise for energy-efficiency. Single board
computers (SBCs) are complete computers developed on a
miniaturised single circuit board. Low cost clusters of SBCs can
help solve this challenge by allowing experimentation and wide
range of configurations. They also have the ability to perform
reasonably well when compared to contemporary devices in terms
of cost and power consumption [7]. Due to their multi-core nature,
they can be optimised to achieve computation faster by using their
inherent parallel capabilities.

The aim of this work is to support researchers in investigating
the factors affecting the performance and energy consumption
of parallel computations. It does this by proposing a framework
which evaluates the execution of parallel algorithms on varying
cluster configurations with a focus on performance and energy
consumption of the computation. It will allow researchers who use
parallel computation to test the performance of their algorithm
in a variety of cluster configurations in order to determine the
best configuration for their needs. The framework is evaluated
with three distinct parallel algorithms and a cluster composed of
Raspberry Pi 3B+ SBCs which have been proven to be useful proxies
for large-scale cluster computing [28]. The framework will likely
lead to cost reduction of computations as well as empowering
research in energy efficient computation methods.

The remainder of this paper is organized as follows. Related
work is reviewed in Section 2. Section 3 introduces a framework
to support evaluation of parallel algorithms on different cluster
architectures. Section 4 presents an experimental evaluation of the
framework using a cluster of SBCs. Section 5 provides a discussion
of the experimental evaluation. Finally, Section 6 summarizes key
observations and describes planned future work.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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2 RELATEDWORK
Computing power available for researchers have been increasing
exponentially [27]. Parallel computing have been used to harness
the computational power from individual computing units using
clusters. As well as maximising performance, there is a need to
design clusters which can perform under a given power budget [7].
Clusters consume a large amount of electrical power and require
sufficient cooling for optimal performance. (𝐺𝐹𝐿𝑂𝑃𝑆/𝑊 ) is used
to measure the power and energy consumption of clusters whereas
(𝐺𝐹𝐿𝑂𝑃𝑆/$) is used measure the effectiveness of the cluster in
terms of performance and cost. This section reviews literature in
experimental cluster computing, energy aware clusters, and
benchmarking clusters.

2.1 Experimental Cluster Computing
Cluster computing is used heavily in scientific computation and
big data processing. Scientific workflows are executed on cluster
computing infrastructure using workflow engines [15, 17]. Using
clusters for computation requires solutions to issues such as data
storage, data retrieval and file handling for cluster computing.
Apache Hadoop [30] aims to solve this problem through
technologies such as the Hadoop Distributed File System
(HDFS) [4]. Generally, full clusters such as those using Apache
Hadoop are very expensive and requires a lot of energy, real estate
and custom cooling. SBC clusters have been proposed as an
effective alternative for mobile Hadoop clusters and robust
computing performances [25, 29, 30].

Novel cluster architectures were introduced to tackle the
problems of Edge computing and Big Data. PiStack [2] focuses on
power efficiency and thermal output while providing an optimal
performance in edge computing conditions. It reduces hardware
footprint by powering nodes through the cluster case and saving
power by introducing heartbeat functionalities for each node.
Deployment approaches include 1U rack mounting of SBC clusters
in data centres to achieve maximum accessibility and easier
replacement [29]. This demonstrates that SBC clusters can be a
feasible approach to edge computing clusters for on-site big data
processing.

Using SBC clusters to perform cloud simulations and provide
virtualisation of resources have been proposed by [13, 32]. Cloud
infrastructure has been simulated using clusters in iCanCloud [20]
and CloudSim [6]. The Glasgow Raspberry PiCloud [32] has used
SBCs to create a cluster for simulation processing. PiCloud [32]
simulates every layer of cloud computing infrastructure.

SBC clusters are particularly useful for edge computing such as
those performing on-site image processing. Image processing is
one of the applications which can make use of in-built parallelism
during processing. Algorithms in OpenCV [30] libraries exploit
parallelism to process each image faster. Clusters executing
algorithms which use the OpenCV library significantly
outperformed single computers in frame processing of a live
stream video [24]. The accuracy of SBC clusters in image learning
was studied by using the Scikit Image library and by executing two
parallel algorithms - Watershed and Edge detection on number of
images [18]. A comparative study of performance of different

image processing libraries using OpenMP [28] on clusters is
presented in [23, 26].

2.2 Energy Aware Cluster Computing
The Apache Hadoop [30] framework is commonly used for analysis
of data intensive operations such as Big Data analysis where large
volumes of data need to be analysed effectively [25]. Hadoop’s
Map/Reduce model is a useful benchmarking tool for comparing
performance and energy consumption of clusters [9]. Comparative
studies of energy consumption in Hadoop clusters show that SBC
clusters can be an effective alternative [8, 14, 25, 31].

Data mining algorithms are used to extract information from
big data-sets [28]. [28] compared two data-mining algorithms
(Apriori and K-means) on a SBC cluster and an HPC platform.
They concluded that even though SBC cluster provided lower
performance than HPC platform, they can be an effective
energy-efficient alternate. Cloud computing is used to process a
large number of computations remotely in data centres [25]. Due
to energy costs, 𝐺𝐹𝐿𝑂𝑃𝑆/𝑊 is an important consideration for
cloud computing infrastructure [2]. A predictive optimisation
model for balance between performance and energy consumption
in cloud computing is presented in [5]. SBC clusters have been
compared to find the best architecture to provide maximum
performance in terms of low network latency, communication
overhead, low power and energy consumption [2, 25].

2.3 Benchmarking Cluster Computing
Evaluating and benchmarking a cluster provides a value of its
maximum performance. There are many benchmarking libraries
and frameworks developed to test different aspects of a cluster.
[22] used High Performance Linpack (HPL) as a benchmark to test
the performance of high performance Beowulf cluster comprising
of 12 node Raspberry Pi 2B SBC. [1] benchmarked SBC clusters
comprising of Pandaboard ES boards and Raspberry Pi boards
using 4 different benchmarks (CoreMark [16], STREAM [16],
Linpack [16], HPL [16], Ping Pong [16] and Nas Parallel [16]).
Benchmarking can also reveal characteristics other than raw
performance; [1] concluded that raw performance of Pandaboard
ES was 2.5 times greater than Raspberry Pi SBCs but with closely
related in terms of performance per watt.

To support researchers, benchmarks have been created for
workloads. [33] developed a framework to benchmark two state of
the art workloads in assessing elasticity in graph analytics. The
framework helps in benchmarking and understanding the benefits,
costs and resource management efficiency of workloads. [34]
developed the BigOP framework to benchmark workloads on big
data systems (Hadoop and Spark). [21] conducts proxy
benchmarks on databases used in big data systems (MySQL,
Cassandra, MongoDB). These evaluate the performance of
workloads and provide comparative results.

The work discussed here shows that cluster computing is
mainly focused on implementing parallel and cluster computing to
solve specific problems but not on improving the efficiency of
already implemented systems. This is mainly due to lack of models
that identify and address the factors that can help in improvement
of the efficiency. Our approach fills that gap by proposing a
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generic framework to evaluate different algorithms on varying
cluster configurations while focusing on their effects on the energy
consumption of the cluster.

3 FRAMEWORK DESIGN
In this section, we describe a generic high-level design of the
“Framework for Evaluation of Parallel Algorithms on Clusters”
(FEPAC), a light-weight and flexible framework for the evaluation
of parallel algorithms on different cluster configurations. The
framework must fulfill several requirements that can be derived
from its objective as a suite to evaluate the performance of parallel
programming models. These criteria will function as guidelines for
the selection of benchmarks as welll as benchmarking practice.

3.1 Framework Requirements
The design of the framework was guided by the following
requirements:

R1 The framework shall help researchers in comparing run-time
performance with energy consumption.

R2 The framework shall support the identification of bottlenecks
for a given computation.

R3 The framework shall allow the specification of a range of
repeated and repeatable experiments with varying algorithm
parameters and cluster configurations.

R4 The framework shall automatically configure the target
cluster for the computation needs as defined in the
experiment’s configuration.

R5 The framework shall automatically execute different
algorithms on different cluster configurations.

R6 The framework shall support algorithms from different
programming languages.

R7 The framework shall provide a comparative output (within
suitable time) of energy consumption for different cluster
configurations and algorithms.

R8 The framework shall support exporting experimental data
for further analysis.

Designing a parallel computing system is a multifaceted process.
It involves individual designing of hardware and software
components. Following the requirements provided above, the
design of the proposed framework is given below.

3.2 FEPAC: A Framework for Evaluating
Parallel Algorithms on Cluster
Architectures

Figure 1 illustrates a generic cluster architecture as used in the
design of the framework presented here. It comprises a number of
inter-connected computing nodes. The master-slave model used in
the design includes asymmetric communication in which a device
(master) controls one or more other devices (slaves or nodes). Each
node has its own operating system, memory and power source.

A high-level view of the framework is illustrated in Figure 2.
Based on the requirements outlined in Section 3.1, the
functionality of the framework can be identified and implemented
accordingly to full-fill the requirements completely. The
functionality that is important and is compulsorily needed to be

Figure 1: Generic Cluster

implemented is included in the generic design of the framework.
The framework provides researchers with a configuration file that
includes all the information needed to execute computations on a
variety of cluster configurations. The functionality implemented in
the framework is outlined below.

Figure 2: Proposed Design of the Framework

Cluster Setup. The framework can automatically set up the cluster
and its nodes for computation (R4). This can be achieved by using
the MPI protocols during run-time (refer to Figure 3). The user
provides the framework with the preferred configuration using
the configuration file. Once executed, the framework will iterate
through the framework as configured, send computation to the
cluster nodes and collect data.

Problem Splitting. The framework provides each node with their
individual slice of data to compute on (R5 and R6). This can also
be achieved through MPI protocols. The data on the master node
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Figure 3: Proposed set-up of nodes in the cluster

Figure 4: Splitting of data for cluster computing

is sliced into smaller chunks so that each node has a small part to
compute and return the results to master. This is the main essence of
parallel computing – to reduce the computation time and increase
performance by reducing the work load on individual nodes by
distributing the overall computing work across number of nodes.

Figure 5: Execution of an algorithm in a cluster

Algorithm Execution. The framework needs to provide the nodes
with the actual set of instructions to perform the required
computation (R5 and R6). The user needs to provide the algorithm
file and declare its usage in the configuration file. The
configuration can include specifications such as location of the file,
parameters needed for algorithm, the dependencies, the output
format, and other needed factors which are important in executing
the experiments. The framework communicates the algorithm file
to each node and the nodes execute the algorithm as per the
specifications provided by the framework (refer to Figure 5).

Figure 6: Collecting energy consumption values

Data collection. R7 can be achieved through implementing
functionality to monitor and log the energy consumption of each
node. Measuring the energy consumption of a particular node is
difficult to achieve using purely software methods. For accurate
measurements there needs to be a hardware interface installed at
the power source which can monitor and send the energy
consumption data to the framework. This can be achieved through
a number of steps. A digital power source with sensors can help in
collection of the energy data (see Figure 6).

Figure 7: Collecting and storing algorithm output data

Data storage. Collecting data from program execution is an
important aspect of any framework. Algorithms can have many
different outputs ranging from log entries to results of the
computation. The framework cannot and should not restrict users
on the output their algorithm provides and hence, a framework
should be able to accommodate whatever output the algorithms
generates. This functionality will help in achieving R3, R8 and R1.
The data collected through this medium is the raw data generated
by a particular algorithm and can help the researcher in
monitoring, evaluating or debugging the algorithm when needed.

Data Exporting. Data exporting is needed for further processing of
experimental results and/or archiving these. Exported data may
also lead to future improvements by implementing new
functionality to use this data. The framework exports the data
from computations into a local database. Users can then export
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Figure 8: Exporting collected data to a file

that data into a compatible file format which can be used to
analyse the data further or add new functionality to the
framework. This functionality allows researchers more control
over the data and freedom to analyse the data in number of ways.
R8 can be full-filled through this design and this can help in
achieving R2.

4 EXPERIMENTAL EVALUATION
FEPAC is a platform-independent framework that allows a
parallelisable algorithm to be executed repeatedly on increasing
sizes of cluster. It allows the collection of experiment data
including energy consumption (both the cluster and individual
nodes), run-time and algorithm output. Raw data can be exported
to be used for further analysis of the experiments. This section
presents an experimental evaluation of the framework as evidence
of how it achieves the goals of this paper. The following
experiments attempt to cover a range of scenarios by using 3
distinct algorithms, used in a wide range of domains. Table 1
briefly summarises the algorithms evaluated and their parameters.

Name Computation Details

Matrix Multiplication Dot product of 3000x3000
and 240x240 matrices

k-means Clustering of 288000 data
points into 48 clusters

OpenCV Filtering

5 Images (1920x1080 pixels)
Applied filters on each image:
blur, sepia, emboss, warm,
cold and increased brightness.

Table 1: List of Algorithms Evaluated and their Parameters

4.1 Experiment Setup
The implementation of the cluster for this experimental evaluation
involved eight individual Raspberry Pi 3B+ SBCs connected to a

managed switch as illustrated in Figure 1. Seven of the eight
RPi3B+ are computing nodes while one RPi3B+ acts as a
networking configuration node which provides the required
network configurations necessary to manage the cluster.

Operating System. For the purposes of this experimental evaluation,
the operating system used on the cluster nodes will mainly facilitate
the use of the platform for computation. To minimise overhead, a
lightweight and highly optimised Operating System is needed to
allowmost resources for computation. DietPi, a Debian-based Linux
distribution was chosen, as it is primarily developed for single board
computers and highly optimised to enable maximum performance.

Networking. RPi’s are usually bootstrapped by flashing an
Operating System image onto a SD card and then inserting the SD
card into the RPi. Due to the light-weight nature of DietPi, each
node can instead be network booted which requires no local drive
for easier experiment configuration. A server node handles all
network booting and provides a base file system for enabling
proper functioning of the nodes using NFS.

Energy Monitoring. To power all the nodes in the cluster,
Power-over-Ethernet (POE) from the managed switch was used.
Energy consumption was monitored by performing queries to the
switch via a Telnet connection. Energy readings provided by the
switch give the instantaneous power consumption in Watts for
each network power, therefore giving the power consumption for
all the nodes in the cluster. With repeated experimentation and
measurement, these values have proved to be reliable and
consistent. This data was retrieved as a string, sliced, and then
stored in a MySQL database.

Physical Setup. The experimental cluster setup can be seen in
Figure 9. Six RPi3B+ were mounted on top of each other. Two
RPi3B+ were mounted together to distinguish them from the
cluster. The top RPi is the one providing the network boot and
file-system to other nodes (Denoted by B) whereas the bottom one
is the master node (Denoted by M). The six RPiś were purely used
for computing purposes (labelled as S1-S6).

Figure 10 shows an extract of the output file generated by the
framework. It is exported in JSON format for easier use and
cross-compatibility. The first object identifies the name of the
algorithm. The second and third level objects represent the
number of nodes and threads the algorithm is being executed on,
respectively. The fourth level object is a tuple data structure
comprising of the timestamps of that particular experiment and
the average power consumption during the experiment.

4.2 Stability and Validity of Experimental
Setup

To validate the experimental setup and verify the stability of
running experiments, an evaluation of the framework by
repeatedly executing the function np.dot for matrix multiplication
on matrices with 240 x 240 elements was performed. The
experiment required a number of basic Python libraries to be
installed: (i) numpy, a library supporting computation with large
arrays, and (ii) mpi4py, a Python binding for the Message Passing
Interface (MPI) standard. The matrix multiplication was repeated
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Figure 9: Photo of the Project Cluster Setup

"opencv": {
"1": {
"2": {

"timestamp": {
"start": "1598965940040",
"end": "1598966009730"

},
"pwr_avg": {

"p1": 4.239130403684533
}

}
},
"6": {

"3": {
"timestamp": {

"start": "1598966016296",
"end": "1598966149690"

},
"pwr_avg": {

"p1": 4.513533785827178,
"p2": 3.0887217467888854,
"p3": 3.0127819534531213,
"p4": 3.0721804253140785,
"p5": 3.0338345864661656,
"p6": 3.0563909344207074,

}
}

}
}

Figure 10: Exported data in a JSON format

10 times for each configuration: 1 to 6 nodes (unused nodes were
powered off) with each node executing 1 to 12 threads. The first
thread on node #1 was configured as master thread and hence did
not execute any matrix computations.

Figures 11 and 12 illustrate the distribution of the numerical
energy consumption and run-time data of the matrix multiplication
obtained from the repeated experiments. The x-axis represents

the node configurations, varying from 1 node and 2 threads to 6
nodes and 12 threads, respectively. The two box plots illustrate the
stability of the data collected from the experimental set-up used –
the largest variation is from using 1 thread on each node as well as
running the computation on a single node. The results illustrate the
stability of the data collection and allow us to report experiments
based on the average of the data from repeated experiments.

4.3 Algorithm Evaluation: Matrix
Multiplication

Matrix multiplication is a common operation used in a wide range
of fields, from mechanics in physics, graph theory in mathematics
to gene expression in biology. Matrix multiplication was chosen
as it has been heavily optimised to work with parallel computers.
The experimental setup is no different from the one in previous
section. The framework is provided with a parallel implementation
of a matrix multiplication and parameters in order to execute the
function np.dot for matrix multiplication on matrices with 3, 000 x
3, 000 elements.

Figures 13 describes the energy consumption of the algorithm.
Matrix multiplication produces the results expected from a parallel
computing algorithm. Increase in the number of computing nodes
leads to decrease in the computing time and increase in performance.
It was seen that the time to compute slowly starts flattening out
at the end of 6 nodes. The power consumption is expected to go
up as more nodes are added but in this case, the decrease in power
consumption can be explained by the speedup obtained during the
computation. As seen in Figure 14, the computation time of the
algorithm reduces considerably when more computation power is
provided. For this reason, even though energy consumption of the
cluster increases due to increase in a computing node, the resulting
speedup can help compensate for it.

Figure 15 shows the energy and the run-time performance data
collected by the framework executing matrix multiplications. A
double axis graph is shown for easy co-relation of both data-sets.
The left Y-axis represents energy consumption values of the whole
cluster and the right hand Y-axis represents run-time.

A researcher can calculate theoretically or experimentally the
lowest computation time achievable for the give data set and
algorithm using the results. This is very useful in predictive
analysis where the algorithm output can be predicted based on its
past performance. Researchers can also identify the bottlenecks
from the graph saying that addition of each node degrades the
performance and then using the nodes to their maximum capacity
leads to increase in performance. The bottleneck here might be the
cache memory which has to load the array first time any node is
added to the cluster.

4.4 Algorithm Evaluation: OpenCV
OpenCV is a development library of aimed at real-time computer
vision [18]. It is mainly used in image and video processing where
a large amount of data needs to be processed in real time. The
main aim of the experiment is to find the effects of image
processing libraries and its different methods on the energy
consumption of a cluster and to identify its bottlenecks. As shown
in Table 1 six different types of filtering methods were used on 5
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Figure 11: Energy Consumption for Matrix Multiplication 240 x 240matrix (10 repetitions)
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Figure 12: Time Consumption for Matrix Multiplication 240 x 240 matrix (10 repetitions)

high-res images recursively. The algorithm was developed in
Python language. Experimental setup was similar to that of matrix
multiplication with different supporting libraries installed (opencv
(3.2.0+dfsg-6)).

Figure 16 illustrates the results of using the FEPAC framework
to evaluate the OpenCV algorithm on increasing sizes of cluster. It
illustrates the Energy Consumption of the cluster and the time taken
by the algorithm to finish the computation, respectively. Figure 16
shows the energy and the run-time performance data collected
by the framework executing OpenCV algorithm. The left Y-axis
consists of energy consumption values of the whole cluster and
the right hand axis comprises of run-time. Using the graph a clear
crossover point between the energy and run-time can be concluded.

As expected, the energy consumption increases with an increase
in nodes and resources being used. There is no significant trend
in the time required by the algorithm, but a clear bottom limit of

the speed can be seen, after which the algorithm starts to degrade
performance. The framework executed the algorithmwith the given
configuration and provided the results shown in the graphs. From
the graphs bottleneck for the algorithm can be hypothesized - data
set being too small for computation. No clear trend in the data
can also suggest researchers to find better ways to optimise the
algorithm or motivate them to find the reason behind it.

4.5 Algorithm Evaluation: k-means
The k-means algorithm is a method that aims to partition 𝑛

observations into 𝑘 clusters in which each observation belongs to
the cluster with the nearest mean [28]. This algorithm was chosen
as the algorithm heavily relies on the communication between
master and slave nodes for computing. k-means have less
independent work units which leads to more synchronization
when the parallel work finishes. A C implementation of k-means is
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Figure 13: Energy Consumption of Matrix Multiplication (3000x3000 matrix)

Figure 14: Time Consumption of Matrix Multiplication (3000x3000 matrix)

used to show the portability of our framework as well as its
compatibility with FORTRAN libraries.

For this experiment, the framework was provided with an
algorithm file which in turn was provided a set of 288, 000 data
points to sort into 48 clusters. The algorithm ran iteratively until
the cluster centers did not change their position.

This algorithm was chosen as researchers have tried to
parallelise the computation but could not gain any significant
improvements [28]. Same conclusions were obtained from an
energy perspective. The algorithm does not improve or in some
cases worsens the performance as well as energy consumption
when adding new nodes.

Figure 17 illustrates the results of using the FEPAC framework
to evaluate the k-means algorithm on increasing sizes of cluster.
Figure 17 shows the energy and the run-time performance data
collected by the framework executing k-means clustering algorithm.

The left and right Y axis comprises of energy consumption and
run-time of algorithm respectively. The close relation between the
run-time and the energy consumption can be used to conclude
different limitations and functionalities of the algorithm.

The results can be used to conclude a number of things. It clearly
showcases the bottleneck in the k-means algorithm: communication
and synchronisation. Also, it shows that adding new nodes to a
cluster degrades the performance of the algorithm. This result can
help researchers in choosing another algorithm or other ways to
improve on algorithm for their computation needs.

5 DISCUSSION
The framework allows scientists to evaluate the performance of
distinct parallelisable algorithms on an range of cluster computing
configurations. The experimental evaluation has demonstrated that
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Figure 15: Matrix Multiplication and Combined Consumption (3000x3000 matrix)

Figure 16: Energy Consumption and Execution Time for
OpenCV Algorithm (5 Images, 6 Filters)

the FEPAC framework can be used for evaluating the performance
of distinct algorithms and different scales of cluster.

Three different algorithms have been evaluated using the
framework to show its functionality. These algorithms have been
taken from distinct research domains and comprises different
programming languages to demonstrate the compatibility and
reliability of the framework. Each experiment presented in
Section 2.1 demonstrated the framework’s ability to meet the
requirements devised in Section 3 - to produce data that exposes
the impact of a cluster configuration on performance or
performance per watt for a particular algorithm.

The framework can identify that no significant improvement
was achieved in the performance over a number of threads on each
node (Figure 15). It can also be used to predict the computation time
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Figure 17: Energy Consumption and Execution Time for k-
means Algorithm (288, 000 points, 48 clusters)

and energy consumption for algorithms as the number of cluster
nodes is increased (Figures 14, 17 and 16).

In addition to this core aim, the framework also supports the
identification of significant features of a computationworkload. The
framework enables identification of bottlenecks in a computation.
The framework identifies the cache memory interference (Figure 14)
in matrix multiplication and communication and synchronisation
as a bottleneck in k-means (Figure 17). The framework show that
OpenCV is not optimised for small data-sets (Figure 16).

6 CONCLUSIONS AND FUTUREWORK
This paper has argued that the lack of a generic programming
support for the evaluation of clusters based on their energy
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consumption is harming the motivation for research and
development in the field of Energy aware computing. It has
demonstrated the design and implementation of a framework for
supporting the evaluation of parallel computation based on a
number of factors including its energy consumption and
performance. A 6-node SBC-based cluster was used allowing
configuration by the number of threads each node is using for the
computation. Three different algorithms have been evaluated
using the framework on different cluster configurations. The
framework presented in this paper can be used to evaluate clusters
with any number of nodes and configurations.

The work presented in this paper can be expanded in a number
of different ways. This paper has focused on the core algorithms
of parallel computation, however, the majority of scientific work
utilises higher-level engines. Workflows allow scientists to build a
computation graph of interdependent tasks tasks that can be used
for complex computation. The work presented in this paper can be
expanded to include support for workflow engines. Containers, such
as Docker, allow pseudo virtualisation and application packaging for
workload deployment. Containers are packages that include a run-
time environment, executable code and library dependencies. The
work presented in this paper can be expanded to include evaluation
of container-based executions. The process of interpreting data
could also be automated by using machine learning to train the
framework to provide a predictive response based on user need.
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