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Abstract—Containers are an increasingly used mechanism for
providing low-cost, lightweight, portable, standalone applica-
tion deployments, particularly for service orchestration. Docker
provides container technology that enables a single host to
isolate several applications and deploy them rapidly in different
environments. The increasing demand for container applications
and the growing popularity of Docker has motivated extensive
research into evaluating the performance, energy consumption,
and running cost of Docker-based computation. This paper
investigates the energy footprint of Docker containers and work-
loads. We take a practical approach to measuring the energy
consumption in common web and database Docker containers
under various workloads. We also investigate the factors that
affect the energy consumption of different Docker containers.
The study aims to motivate research in energy-efficient container
development.

Index Terms—Virtualization, Containers, Docker, Energy

I. INTRODUCTION

Docker containers provide an infrastructure for lightweight,
deterministic, and manageable isolated containers enabling
agile computing resources. Containers are a form of virtu-
alization where applications can run in isolated environments
with pre-determined dependencies [1]. Docker containers can
launch quickly and with lower overhead as compared to Virtual
Machines. It is common for Docker containers that contain
services to be deployed multiple times daily in support of thou-
sands of users and on hosts with very different hardware [2].
The computing resources available for these containers can be
easily managed. This leads to the highly scalable nature of
the containers. Being lightweight, Docker containers can be
used in conjunction with one another without a huge impact
on their performance.

Docker allows for the seamless development and deploy-
ment of applications as it ensures the dependencies and makes
sure that of consistency of the development environment will
be the same as the deployment environment. According to
a Docker report in 2018, users were running around 154
individual Docker containers on a single host which was
50% higher than that of the previous years [3]. 83% of the
production environments tested in the report of 2018 made
use of Docker for deployment [3]. Although virtualization
has been accepted for many years, the ease of use of Docker
containers has led to massive growth in its usage.

Docker has been gaining popularity due to its multiple
benefits over traditional deployments or virtualization tech-

niques. The increasing use of Docker for deployments has led
to research in performing measurements, optimizations, and
improvements of Docker workloads. Docker containers can
be very efficient in terms of resource utilization, but they can
also consume a significant amount of energy if not properly
managed [4]. Much of the research until recent years looked at
measuring the overheads of Docker, its impact on performance,
and the comparison between bare-metal deployment versus
Docker deployment. The research was aimed towards im-
proving the performance of Docker containers with not much
notice given to their energy consumption [5]. In the recent
past, the energy consumption or carbon footprint of computing
systems has started to gain the attention of researchers as we
are gearing towards global energy crisis [6]–[9].

Despite Docker becoming one of the most used modern
deployment technologies; there is very little information on the
energy consumption of Docker containers and Docker work-
loads that can help in developing or making informed decisions
about how to optimize the Docker deployments [10], [11].
There is a need for a standardized way to measure, analyze
and improve the energy consumption of Docker containers.
Measuring the energy consumption of the Docker workloads
can also help in understanding how energy consumption
correlates to performance [12].

The aim of this study is to begin to understand and motivate
research into analyzing and optimizing the use of Docker
containers with respect to their energy consumption. This
would promote energy-efficient container deployments and a
large proportion of computation infrastructure. It also aims to
provide important additional context metrics for deployment
managers to make decisions that include energy. The key
contributions of the research presented in this paper are: i)
proposing an approach for measuring the energy consumption
of Docker containers. ii) providing in-depth analysis of dif-
ferent factors that affect the energy consumption of Docker
usage iii) providing the motivation for improving the energy
efficiency of Docker containers.

The remainder of this paper is structured as follows.
Section II provides background on container virtualization,
Docker, and energy-aware research in this area. Section III
presets the experimental setup used to conduct this study. Sec-
tion IV presents experiments that observe the energy impact of
a range of standard docker containers and varying workloads.
Section V presents an in-depth analysis of different factors



that affect the energy consumption of the machine. Finally,
Section VI provides conclusions and future work.

II. BACKGROUND

Virtual Machines provide virtualization and resource isola-
tion at the cost of being resource-intensive and high overheads.
Containerization helps solve the issue as it allows organi-
zations to quickly, efficiently, and successfully deploy their
applications. As the world becomes increasingly digitized,
organizations are deploying applications rapidly when needed.
This has raised the need to monitor and optimize the energy
consumption of their deployments [13]. This can help to
develop more sustainable applications that use Docker to have
less energy footprint. The remainder of this section provides
a background on (i) Containers, (ii) Docker, and iii) Related
work in Energy-Aware Docker Computation.

A. Containers

Containers are a type of virtualization technology that
isolates an application or process from the rest of the operating
system (OS) so it can run without affecting other parts of
the system [1], [2], [10]. A container can be considered a
package of multiple processes that are running in an isolated
environment along with all the code and the dependencies.
This isolation makes containers an attractive option for running
multiple applications or processes on a single OS instance, as
it ensures that any issues with one container will not impact
the others.

Containers have been around for many years, but they have
only recently gained popularity due to the rise of micro-
services and container orchestration tools like Docker Swarm
and Kubernetes [14], [15]. Containerization offers many ben-
efits, including portability, isolation, and ease of use. They
are extremely lightweight and can be instantaneously started,
managed, or stopped with a single command.

These containers are managed and controlled by container
engines such as Docker, rkt, runC, Containerd, LXC, etc.
These container engines allow users to easily start multiple
containers with a single command. They also provide other
features such as statistics, resource management, removal, and
deployment of the container to the cloud.

B. Docker

Docker is a container virtualization technology [16]. Docker
is a tool that enables developers to easily create, deploy, and
run applications in a container. A container is a self-contained,
isolated environment that contains all the necessary files and
dependencies for an application to run.

As seen from Figure 1, Docker allows multiple applications
to run seamlessly on a single server. Each application along
with its dependencies is isolated in its own container, which
makes it easy to manage and update them. Docker is popular
because it makes it easy to package and ship applications.
Developers can simply create a container, add their application
code, and then ship it off as an image that can be instantiated

Fig. 1. Docker: Container-based architecture

on another server. This makes it easy to deploy applications
in a consistent and repeatable manner.

A Docker container is a custom isolated system includ-
ing all the base requirements of an Operating System such
as filesystem, libraries, and dependencies. A Docker image
contains a filesystem, which contains everything needed to
run an application - all dependencies, configurations, scripts,
binaries, etc. The image also contains other configurations
for the container, such as environment variables, a default
command to run, and other metadata.

The Docker daemon (dockerd) is a container management
engine. It is responsible for starting, running, managing, and
removing the containers and the system’s resources. Docker
is being increasingly used in industry as it provides highly
unique benefits such as 1) Fast and Easy Configuration;
2) Security Management; 3) Easy resource management; 4)
Application isolation; 5) Development of Swarm Applications;
6) Rapid Scaling and Deployment of Systems, and 7) Reduced
Deployment Size [17].

A Docker container can be easily deployed using a single
configuration file called a Dockerfile. A Dockerfile is a text file
that contains instructions for how to build a Docker image. It
contains all the information such as the location of the code, its
dependencies, the base image, the default command to run, etc.
A docker image is dependent on the Host Operating System
on which it is realized or executed.

C. Energy Aware Docker Workloads

As Docker has been gaining popularity in the field of in-
dustry as well as research, multiple attempts at optimizing the
Docker workloads have been conducted. These optimizations
are in both - the performance and the energy consumption of
the Docker containers. This section focuses on the literature
in the field of Energy Aware Docker Workloads.

Docker containers consume a lot of energy if not properly
configured or managed. Even though the main contributor
towards the energy consumption of a Docker container is its



CPU load, [18] identified that there are other components
such as the strain on the host Operating System that can
contribute towards the increased energy usage of a container.
These components need to be considered during the analysis
and optimization of Docker containers.

According to a recent study, the average energy consump-
tion of a Docker container is about 0.15 kWh [12]. This
does not seem like a lot but it can add up quickly as
usually multiple Docker containers are used together. A task
scheduling algorithm that takes into consideration the current
energy consumption of the containers has been developed to
handle requests in real-time and schedule the requests in an
energy-balanced manner [19].

A Workload aware Energy Efficient Container (WEEC)
brokering system is introduced for Docker containers with the
aim to reduce their energy consumption in Docker-based cloud
data centers [20]. A Docker-based energy management system
(DEMS) architecture is developed as an improvement to the
traditional energy management system (TEMS) in order to fix
the issues of slow deployment and low flexibility [21]. The
DEMS reduces the number of web releases of a container by
3 times and the workload by 2 times.

An approach called brownout is proposed to dynamically
activate or reactive optional containers in data centers [22].
This approach was able to reduce about 10% - 40% energy
consumption of the micro-services hosted by the data center.
Similarly, an Energy-Aware scaling algorithm was developed
to dynamically load balance the requests [23], [24]. The
algorithm is able to spawn new containers during heavy loads
and kill existing containers in order to save energy based on
certain thresholds [23], [25].

Energy consumption increase due to the Docker con-
tainerization was compared between different Docker work-
loads [12]. A comparison between the energy consumption of
different virtualization technologies such as Virtual Machine,
Docker, and Kubernetes has been conducted [26], [27]. The
energy consumption of a single web app container has been
captured in response to the scaling and balancing of the
load [28].

Background and Literature in the field of containers,
Docker, and energy-aware Docker Computing have been pre-
sented in this section. The majority of the energy-aware work
has been conducted in relation to a single Docker workload
and/ or Docker workloads deployed in the cloud. The current
research in the field of energy-aware Docker Computing is
generic in nature and tries to reduce or monitor the energy
consumption of the whole Docker as a whole. They do not
profile or analyze the energy footprint of common Docker
workloads. The study presented in this paper addresses this
issue and provides a comparison between multiple Docker
workloads and investigates the underlying factors that affect
the energy consumption of the workloads.

III. EXPERIMENT SETUP

For the purposes of this study, the energy consumption of
multiple Docker containers with different workloads running

on a single computer has been measured. An initial experiment
to showcase the energy monitoring technique used in this study
has also been presented here. In this section, the experimental
setup and the components used to generate, collect, store, and
analyze the energy and performance data are presented.

A. Hardware

1) Host Computer: In order to translate the results of
this study to real-world data centers, an Intel-based x86
NUC was chosen as the host machine to run the Docker
containers with varying workloads. The Operating System
installed on the Intel NUC is Debian-based Linux Mint 20
(https://linuxmint.com/, accessed on 4 December 2022). The
configuration of Intel NUC is 11th Gen Intel(R) Core(TM) i7-
1165G7 @ 2.80GHz with 4 cores or CPU and 8 threads. Intel
NUC corresponds to computers that are normally used to run
Docker containers.

Fig. 2. Energy monitoring plugs

2) Energy Data Collection using Smart Plugs: The host
machine is powered using the main power plug via a smart
energy monitoring plug. The smart plug has an integrated
ESP8266 [29] chip that allows the smart plug to connect to the
local network and enable the collection of energy data using
application programming interface (API) calls. Internally, the
smart plugs are collecting energy consumption using the
HLW8032 energy meter sensor. The smart plug is running
the latest version of ESPHome Firmware. The firmware has
been modified to measure and deliver the energy data every
500ms. This data is collected at a set interval and stored in
the database.

There are different endpoints that can be queried to get
different measurements from the smart plug. The API endpoint
smart_plug_v2_current provides us with the current in
Ampere. Similarly, the endpoints smart_plug_v2_power,
smart_plug_v2_energy, smart_plug_v2_voltage
provide the consumption data such as the power (in Watts),
Energy (in kWh) and Voltage (in volts) respectively. These
endpoints return the data in a JSON format which is then
parsed and stored in the database.

B. Software

1) Energy Collection: FEPAC [13] was modified to collect
energy data from the Smart plugs using API calls. FEPAC

https://linuxmint.com/


identifies the smart plug using the IP address of the smart
plug when connected to the local network. The energy data
is then collected and stored in a database every 500ms. The
data in the database is synced with the computation on the
host machine via the timestamp field. The synced data is then
analyzed and important conclusions are made.

2) Docker: The experiment platform is running Docker
Daemon version 19.03.8, build afacb8b7f0 [16]. For the ex-
periments presented in this paper, the Docker daemon uses
the default configuration. The versions of the Docker images
used in this study, use the most recent stable versions from
the DockerHub repository [30].

IV. ENERGY CONSUMPTION OF DOCKER WORKLOADS

Section III presented the experimental setup for the ex-
periments conducted throughout this study. The section also
confirmed the accuracy of the energy monitoring device
(energy-monitoring power plugs) being used in this study.
Docker containers are being used everywhere, right from small
applications to hosting full-fledged enterprise solutions.

Dockers are highly scalable and can perform really well
under stress [31]. Docker containers are also able to utilize
the full computing resources of their host [32]. In this section,
a number of workloads and experiments were conducted on
different web and database Docker containers to test their
performance and measure their impact on energy consumption.

A. Measuring the energy consumption vs CPU load

An initial experiment to measure the change in energy
consumption of the host machine with respect to varying
workloads was conducted to confirm the proper and accurate
functioning of the energy monitoring device. Energy consump-
tion data was collected every 500ms and the load on the host
machine was gradually increased and decreased by maxing
out the threads using the command ‘yes > /dev/null’. Every
time this command is executed, a thread on the host machine
is maxed out that outputs the string ‘yes’ continuously.

The execution data of the experiment is shown in Figure 3.
The X-axis indicates the execution time (in seconds). The
left Y-axis denotes the instantaneous energy consumption (in
watts) of the host machine at that particular execution time.
The right Y-axis shows the CPU usage (in percentage). The
orange lines denote the number of threads being maxed out
(also denoted by T0-T8 at the top).

Based on the data from Figure 3, the energy consumption
of the host machine increases gradually until the 4 threads
are maxed out on the host machine. After that, even though
the CPU usage is increasing as we max out more threads,
the energy consumption is stable. This is expected as the host
machine is quad-core (i.e. 4 cores and 8 threads). This means
that 4 CPUs can perform 8 tasks parallelly. The base energy
consumption of the host machine is around 3.75W and the
maximum it consumes is around 47W when the load is maxed
out. The increase in energy can be seen before the increase in
CPU usage with a delay of around 2 seconds. This experiment
successfully shows that smart plugs can be used to accurately

Fig. 3. Energy consumption of Docker container under stress increasing
decreasing threads

measure the energy consumption of any device connected to
it. Also, it is recommended to use all 8 threads on the host
computer as compared to just using 4 threads.

B. Energy Overhead of Docker

Standard execution of any workload on Docker containers
includes starting the Docker daemon and the service in the
background and then building and/or running the containers
to perform a certain task. This experiment denotes the initial
overhead of starting the Docker daemon and service in the
background. The data from this experiment showcases the
initial impact of Docker on the energy without running any
specific workload on the computer. Based on the data from
this experiment, if the initial energy overhead of Docker is
too high then it might be considered during the calculation of
any future experiments.

Figure 4 illustrates the energy consumption of the host
machine before and after turning the Docker daemon on. The
X-axis indicates the execution time (in seconds) and the Y-
axis denotes the instantaneous energy consumption of the host
machine (in watts).

The energy consumption of the host machine was collected
for a few minutes before and after turning the Docker daemon
on. It can be seen that the base energy consumption of the
host machine is around 3.75 watts. As soon as the Docker
daemon is turned on (denoted by the Orange line), the energy
consumption of the host machine increased to around 18.25
watts for a few seconds and then it came back to the mean
average energy consumption. The difference in the idle energy
consumption of the host machine before and after the Docker
daemon is minimal. This is expected as once the Docker
daemon is turned on, it does not actually use any resource of
the host until a container is activated. Due to the minimal and
short-lived increase in energy consumption of the computer
when turning the Docker daemon on, this energy is not
considered for any future experiments.



Fig. 4. Energy Consumption of Docker daemon turning on

C. Web server container

A study showed that a few of the top most used tech-
nologies running using Docker are web servers and database
servers [33]. Out of the top 10 technologies deployed using
Docker, 5 are database-related and 3 are web hosting-related
technologies [33].

In this Section, two web-based Docker technologies (Nginx
and Apache) are compared. A number of different experiments
were conducted to measure the performance and energy impact
of these containers. A simple HTML web page of size 615
bytes is being served using these web technologies. The web
servers are stress tested. The stress test includes sending a
huge amount of requests to the web servers and measuring
the latency by which the web page or the request is served.
This test also keeps the connection between the old requests
open to further stress the web server.

1) Web technology fingerprinting and stress test: Finger-
printing web technologies include measuring the energy con-
sumption of starting the containers. This is done mainly to
check the overhead of the container. The containers are then
subjected to a standard stress test using wrk2 benchmarking
tool [34]. For the purposes of this study, the benchmarking
tool is requesting 500,000 requests to the web server every
second and keeping 500 concurrent connections alive.

Figures 5 and 6 illustrate the energy consumption of the
host machine during the fingerprinting and stress test of the
Docker web technologies. The X-axis indicates the execution
time (in seconds) and the Y-axis denotes the instantaneous
energy consumption of the host machine (in watts).

The energy consumption of the host machine was collected
for a few minutes before and after the experiment. The time
when the Docker containers were started and the stress test was
conducted is marked in Figure 5 and 6 (denoted by the Orange
line). A spike in the energy consumption of the host machine
can be seen which is distinctly greater than the base energy
consumption. The energy overhead of the Nginx container is
greater than that of the Apache Container as an increase in

Fig. 5. Energy Consumption of Nginx Docker container turning on and under
stress

Fig. 6. Energy Consumption of Apache Docker container turning on and
under stress

energy consumption can be when the Nginx container is turned
on as compared to the Apache container.

Both containers consume around the same amount of energy
during the stress test. The energy consumption range of both
containers is between 50 to 56 watts. The Nginx server served
a maximum of 114,717 requests per second and Apache served
around 38,636 requests per second. Nginx container can be
considered more energy efficient as it consistently and without
any latency served more requests made by the benchmarking
tool in contrast to Apache.

2) Varying workloads on Web Docker Containers: In this
experiment, the same benchmarking tool is used to stress
test the servers using varying workloads. The only change
in the configuration is the number of requests requested per
second from the server. The number of requests gradually
increase from 10,000 requests per second to 100,000 requests
per second. The data from this experiment will help co-relate
energy with the performance of the Docker containers. This



is done to check the impact of the workload on the energy
consumption of the Docker web server.

Figures 7 and 8 illustrate the energy consumption of the
host machine during the experiment. The X-axis indicates
the execution time (in seconds) and the left Y-axis denotes
the instantaneous energy consumption of the host machine
(in watts). The right Y-axis denotes the requests-per-second
requested by the benchmarking tool. It should be noted that
the benchmarking tool requests more than what the web server
can process just so as to stress it to its maximum.

Fig. 7. Energy Consumption of Nginx Docker container under varying
workloads

Fig. 8. Energy Consumption of Apache Docker container under varying
workloads

Figures 7 and 8 present distinct differences between the
energy consumption of the Nginx and Apache Docker con-
tainers under varying workloads. The Nginx container has
consistent behavior in terms of energy consumption and is
consistently serving the requests made by the benchmarking
tool. A clear increase in energy consumption can be seen

during each benchmark experiment. Also, the peak energy
consumption gradually increases as the workload increases.

In Apache containers, many of the requests were of high
latency and some even failed. This behavior is confirmed by
the energy consumption of the Docker container during the
benchmark test. The energy consumption during each test
spiked instantaneously and then gradually decreased during
the benchmark indicating that the container was not under
stress for the whole duration of the experiment. Due to this,
multiple requests were failing or not being served consistently.
A more in-depth understanding of the Apache web server
and its internal load balancing is required to deduce why this
behavior was observed.

3) Nginx vs Apache: Inconsistent behavior in terms of
energy consumption and performance was observed between
the Nginx and Apache Docker containers in the previous
Section. Apache server drops more requests than Nginx and
due to that the energy utilization data is skewed. A fair
comparison between the energy consumption of the containers/
servers can be done by considering the energy consumption of
the containers when their successful performance (successful
completion of requests) is compared.

Stress tests similar to the previous Section were conducted.
The stress tests provided the number of successful requests
being served by the server and the number of failed/ dropped
requests. This number of successful requests served by both
servers was compared for varying loads of stress.

Fig. 9. Averge Energy consumption of Nginx vs Apache

Figure 9 illustrate the energy consumption of the host
machine during varying workloads as compared with every
1000 successful requests. The X-axis indicates the requests
per second requested by the benchmarking tool (in multiples
of 10,000 requests) and the Y-axis denotes the average energy
consumption of the container per 1000 successful requests (in
watts).

As seen from Figure 9, the Nginx Docker container is
more energy efficient as compared to Apache for different
workloads. Nginx has also outperformed the Apache web



server in terms of memory, latency and CPU load due to its
inherent architecture [35], [36]. A study showed that Nginx is
around 2.5 times faster than Apache web server [37]. Similar,
results can be seen in terms of the energy consumption of the
Docker containers. Apache Docker containers consume around
2 to 3 times more energy than Nginx to successfully serve
1000 requests.

D. Database Container

In the previous Section, popular Docker-based web tech-
nologies have been compared with each other in terms of
their performance and energy consumption. The second most
used Docker technology after Web server is Databases. In
this Section, two widely used Database Docker technologies
(Mongo DB and Postgres) have been compared for their
overhead and a stress test has been performed with a focus
on energy consumption.

The energy consumption of two Database based Docker
containers has been compared for the overhead and the stress
test. The stress test is conducted using the POC Driver [38]
for Mongo DB and pgbench [39] for the Postgres.

Figures 10 and 11 illustrate the starting and stress testing
of these Docker containers. The X-axis denotes the time
in seconds and the Y-axis denotes the instantaneous energy
consumption of the host machine at that given time. The time
when the containers were turned on and the stress test started
and ended have been marked in the Figures.

Fig. 10. Mongo enable and stress test

As seen from Figures 10 and 11, there is not much clear
impact on energy for both the containers being turned on. The
slight increase in energy consumption during that time could
not be clearly associated with the start of the containers due
to a wide range of internal processes by the host machine.
Even though no energy overhead of starting Mongo DB and
Postgres containers can be identified, these containers could
be performing some other background processes.

A notable difference can be seen in the energy consumption
during the stress test of the two containers. The peak energy

Fig. 11. Postgres DB enable and stress test

consumption of the Mongo DB is between 65 watts and 73
watts and for Postgres, it is between 50 watts and 53 watts.
Mongo DB is consuming a lot more energy for the same
amount of performance as compared to Postgres.

E. Fingerprint multiple containers

Starting a Docker container saw an increase in the energy
consumption of the host computer (see Figure 5). In this
Section, multiple different Docker containers were turned on
and the energy consumption was measured to investigate
the overheads of different Docker containers based on their
functionality. The containers were turned off and a delay was
added to ensure the containers do not affect each other’s
consumption data.

Figure 12 illustrates the energy consumption of different
Docker containers being started one after the other. The type of
Docker container is provided on the top of each corresponding
spike in energy consumption. The X-axis denotes the time in
seconds and the Y-axis represents the instantaneous energy
consumption of the host machine at that particular time.

As seen from Figure 12, differences in the peak energy
consumption can be clearly seen between a few groups of
Docker containers. Nginx container and Python container have
similar energy overhead starting at around 16 watts. The
Hello World Docker container was found to be consuming
the most amount of energy which was around 18 watts. PHP
and Ubuntu containers consumed around the same amount of
energy between 17 watts and 18 watts.

The Debian and Alpine containers consumed less energy to
start as compared to all other containers. The Debian container
used around 15 watts of energy and the Alpine container
used around 10 watts (the lowest among the group). This
fingerprinting of different Docker containers can have multiple
security implications as it shows that the energy consumption
of just starting the containers can be used to uniquely identify
the type of container being started.



Fig. 12. Energy Consumption of different Docker container starting

V. BREAKDOWN OF ENERGY USAGE

To further investigate the differences between the energy
consumption of different Docker technologies and the factors
that might be affecting the energy consumption, a series
of experiments were performed with a focus on getting the
internal statistics of the computer and finding the root cause
of the increase in energy consumption. The three main factors
that are being considered are the CPU, Memory, and Input-
Output calls (IO Utilisation). This will help co-relate the CPU,
Memory, and IO utilization with the energy consumption of
the host computer.

Figures 13 and 14 illustrate the energy consumption of web
(Apache) and database-based (Mongo DB) Docker containers
being started and stress tested. The graphs also include system
information such as CPU, Memory, and IO Utilisation. The
X-axis denotes the time in seconds. The left Y-axis denotes
the instantaneous energy consumption in watts of the host
computer at any given instant and the right Y-axis presents the
following three attributes as a percentage - the CPU, Memory,
and IO utilization. The point when the containers are started
and the stress test is conducted is marked on the graphs.

Figure 13 illustrates the energy consumption of the Apache
container as compared to the CPU, Memory, and IO utilization
of the host computer. In contrast to Figure 5, a spike in energy
consumption of the Apache container is not seen when the
container is started. An increase in CPU and IO utilization
can be seen at the same time. The memory utilization remains
constant during the whole execution of the stress test and
container starting up.

During the stress test, a corresponding increase in CPU
utilization can be seen with less to no comparable increase in
IO utilization. The energy consumption increases as the CPU
utilization increases and it ranges between 50 to 55 watts.
As there is no change in the memory or IO utilization, the
major factor for the energy consumption of the computer can
be attributed to its CPU utilization.

Fig. 13. Breakdown of Energy Consumption of Apache Docker container
under stress

Fig. 14. Breakdown of Energy Consumption of Mongo DB Docker container
under stress

Figure 14 illustrates the energy consumption of the Mongo
DB container as compared to the CPU, Memory, and IO
utilization of the host computer. Mongo DB is a database tech-
nology and its major functionality includes storing, reading,
and updating data into memory and disk. The stress test being
conducted tries to insert 100,000 records into the database
which in turn gets stored on the disk. As expected, the CPU
utilization is near 100% with all the processing of memory and
reading and writing to the disk. As CPU utilization increases,
a corresponding spike in energy consumption is also seen.

Database technologies are IO (input-output) intensive tech-
nology. As expected, the memory utilization gradually in-
creases as we request the container to insert more records into
the disk. These records are first stored in the memory and then
a batch of these records is written to the disk altogether. Due
to this, constant spikes in the IO calls to the disk are seen at
regular intervals.

Based on the data from Figures 13 and 14, the energy



consumption of the host computer is majorly dependent on
the CPU usage of the computation or workload. The memory
and the IO utilization on their own marginally increase the
energy consumption. A comparable increase in energy can be
seen when all three attributes - CPU, Memory, and IO are
being utilized. The maximum energy consumption range of
the Apache container was around 50 - 55 watts and that of
the Mongo DB container was around 68 - 73 watts. The CPU
utilization is almost near 100% in both cases but in the latter
case, we have a huge utilization of Memory and the IO calls
to the disk. There are several factors that can affect the energy
consumption of computers. The type of processor, the amount
of RAM installed, the type of cooling system used, the type of
Operating System, etc. can all have an impact on the amount
of energy a computer consumes. The experiments presented
in this paper are a step towards transparency on factors that
affect the energy consumption of computers and Docker.

VI. CONCLUSION

Docker containers are becoming increasingly popular, as
they offer a convenient way to package and deploy appli-
cations. However, there is a downside to this convenience:
Docker containers can consume a lot of energy. Docker
applications are being increasingly adopted for deploying all
sorts of applications. Therefore, it is important to consider
the implications of these applications and their parameters on
energy consumption. Monitoring the energy consumption of
Docker containers can help to save costs and reduce the carbon
footprint of a computation. It can also help in identifying appli-
cations that are unnecessarily energy-intensive and necessary
steps to improve their efficiency can be discussed.

The experimental results presented in this paper have a
number of lessons, i) It is possible to measure the energy
consumption of Docker containers. ii) It is possible to measure
the level of workload by observing the energy consumption
of containers. iii) Using this knowledge you can select from
different container implementation technologies. iv) It is pos-
sible to analyze the underlying factors that impact the energy
consumption of the machine.

This paper has demonstrated a strong need for approaches to
optimize container workload executions with a focus on energy
consumption and also performance. In future work, we hope
to further investigate container-based workloads, including
distributed workloads using Docker Swarm and Kubernetes.
It is important to note that, all the experiments presented in
this paper were conducted on a single machine, which makes
extrapolating the results to other platforms difficult because
different hardware setups can have varying power utilization.
This will be further explored in the future by expanding the
computing resource to include more diverse hardware. With
this knowledge, we aim to develop approaches for optimizing
energy-efficient decision-making in container orchestrations.
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