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Abstract—Optimizing computation for energy consumption
and performance requires consideration of the following three
key factors: the energy consumption of the resources used; the
performance of the workflow; and the time it takes to complete
the computation. The increasing complexity of today’s
computing systems makes it essential to ensure that the
resources allocated to a workload are used in the most effective
and cost-efficient manner. In this paper, the importance of
optimal scheduling solutions for scientific workflow computation
is presented. A generic framework is proposed that takes into
consideration the user constraints, performance, and factors
that affect the energy consumption of different computations to
develop an optimal schedule for workflow execution. The aim
of the framework will be to improve the energy consumption
and performance of the computation. The study also aims to
motivate research in energy-efficient optimized scheduling.

Index Terms—Energy, Optimize, Workflow, Heuristics

I. INTRODUCTION

Scientific workflows are an increasingly popular way to
streamline and automate complex scientific processes. By
combining a series of tasks into a single workflow, scientists
can save time and energy while ensuring that all steps are
completed in the correct order. Scientific workflows are used
to automate tedious manual processes and help researchers to
focus on more important tasks such as analysis and
interpretation of results. This makes it easier to repeat
experiments, collaborate with colleagues, and share results
with the scientific community.

A scientific workflow is a set of instructions that define
how data is collected, processed, and analysed [1]. This may
include steps such as retrieving data from a database,
cleaning and formatting the data, executing statistical tests,
and producing visualizations. Workflows can be executed on
a single computer, or distributed across multiple computers
and networks.

Large computation capacity is needed to meet the
increasing demand for computation. These data centers face
multiple challenges such as energy consumption (for
computation, cooling, and power delivery systems),
execution time, heat generation and consequently cooling
infrastructure, CO2 emission, and high operational costs.
Due to the scale of the installed systems and their resource
usage, a small improvement in any of the given challenges
can have huge environmental and financial benefits.

In the past, researchers almost exclusively targeted the
performance of computation. With an increasing global

energy crisis [2], there is a need to consider the energy
consumption as well while optimizing the computation,
resulting in a multi-objective optimization problem where
energy consumption and run-time performance need to be
optimized according to users’ needs [3]–[5]. Effective
optimization in energy consumption and performance can
heavily reduce the costs associated with wasted resources
and can help maximize performance by streamlining
processes and eliminating inefficiencies.

When optimizing for energy consumption and
performance in workflow computation, it is important to
consider the different elements that can affect the energy
consumption and performance of the computation [6]. This
includes the hardware and software used, the algorithms and
data structures employed, and the overall architecture of the
system. It is also important to consider the type of workloads
that will be processed, as this can have a significant impact
on the cost and performance of the computation.

The paper aims to motivate research in different
optimizing approaches for developing effective scheduling
solutions based on energy consumption and performance for
scientific workflow computations. The current state-of-the-art
techniques used to find the optimal scheduling solution for
energy consumption and performance are presented. It is
anticipated that a system built using optimization techniques
to balance performance and energy consumption of
computation will improve the costs of performing the
computation and assist in better utilization of resources.

The key contributions of this paper are as follows: (i) the
current state of energy-aware computation optimization
techniques; (ii) a survey of potential optimization techniques
suitable for this problem; and (iii) a conceptual framework
for optimal scheduling of workflow execution for
energy-consumption and/or performance.

The remainder of this paper is as follows: Section II
provides an overview of scientific workflow and related work
in the domain of optimization that focuses on energy
consumption and the performance of computation.
Section III presents a survey of different optimization
techniques that can optimally schedule scientific workflow
execution. Section IV presents a conceptual framework that
develops optimal scheduling solutions for scientific workflow
computation. Finally, Section V provides conclusions and
future work.



II. BACKGROUND

Scientific workflows are increasingly being used to
automate complex processes and data analysis, such as data
mining, machine learning, and natural language processing.
Understanding how to optimize scientific workflows can help
to reduce errors, increase the reliability of the results and
improve the performance or cost of computation. This
section provides a background on (i) scientific workflows,
(ii) optimization techniques focusing on energy consumption,
(iii) optimization techniques focusing on performance, and
(iv) optimization techniques focusing on both the cost and
performance of computations.

A. Scientific Workflows

Scientific workflows are a series of steps or tasks that are
executed in a specific order to accomplish a scientific or
research goal. These steps may include data collection, data
processing, analysis, and visualization. Scientific workflows
can be used in a variety of fields, including genomics,
bioinformatics, and climate modeling. They allow for the
automation of repetitive or complex tasks, and can also
facilitate collaboration and reproducibility in scientific
research. A workflow consists of a number of separate jobs
that can each be executed separately. The tasks in a
workflow are often interdependent, meaning that the output
of one task is used as input for another task. Some examples
of scientific workflows include Montage Workflow and
Bioinformatics workflow [1].

As the scale and complexity of these workflows continue
to grow, so too does the demand for computational
resources. This increase in demand for resources can lead to
high energy consumption and poor performance, which can
negatively impact the overall efficiency and effectiveness of
the scientific research process [7].

To address the issue of ever-increasing demand for
compute resources, several optimization techniques have
been developed to find the optimal scheduling solution that
takes into consideration the energy consumption and
performance of computation. These techniques can be
broadly categorized into two groups: those that focus on
reducing energy consumption and those that focus on
improving performance.

B. Optimising for energy consumption

A mathematical model is developed to reduce the energy
consumption of machines that takes into consideration
different attributes of machines such as idle time, launch
time for computation, and time it takes to power off and
on [8]. A genetic algorithm is used to obtain ’near-optimal’
solutions to achieve the lowest energy consumption using
different attributes [8].

An energy loss optimization scheduling modeling method
based on the multi-objective fuzzy algorithm has been
developed that focuses on the energy cost and scheduling
time of the equipment in an IoT environment [9]. This
model focuses on a single-target energy loss problem and

searches for idle time of the device and schedules jobs
accordingly to make complete use of resources and to reduce
the overall energy consumption.

A mixed meta-heuristic algorithm comprising of Whale
Optimization Algorithm (WOA) and Evolutionary Algorithm
(EA) is developed to improve the energy consumption of IoT
devices in a network by considering factors such as
workloads, temperatures, remaining energy, and the target
energy consumption [10], [11]. The meta-heuristic algorithm
is then contrasted with widely popular optimization
techniques such as the Artificial Bee Algorithm (ABA),
Neural Network (NN), and Simulated Annealing (SA) to
evaluate its performance.

A heuristic method to consolidate virtual clusters has been
developed that focuses on the energy consumption of servers
by analyzing the server duration and utilization. The
algorithm aims to consolidate virtual clusters on physical
servers to save energy while guaranteeing job service-level
agreements (SLAs) [12].

C. Optimising for performance

An optimization model is developed using mixed integer
programming focusing on improving performance and
minimizing deadline misses. A heuristic approach using
Generic Algorithm (GA) is used to develop a scheduling
solution using the model in the cloud computing
environment [13].

A Hybrid Optimization approach towards Tensor
computation on heterogeneous systems has been undertaken
that performs schedule exploration and optimization to
improve the performance of Tensor computation. The
approach makes use of different Heuristic methods and
Machine learning methods to develop different schedules
specific to the hardware requirements [14].

An enhancement to the Whale Optimization Algorithm has
been introduced focusing on addressing the issue of resource
scheduling for performance in cloud environments. The new
algorithm falls under the category of swarm intelligence
metaheuristics and has been evaluated with different data,
simulations, and other algorithms for its achieved
performance and resource scheduling [15].

A cloud scheduling policy based on an Ant Colony
Optimization (ACO) has been developed that focuses on
minimizing the makespan of the given task set by adapting
the scheduling strategy to the changing environment. The
algorithm uses a random optimization search approach to
allocate and schedule incoming jobs to virtual
machines [16]. ACO is also used to reduce the energy, cost,
and time of resource scheduling in cloud computation [17].

D. Optimising for performance and energy

A Whale Optimization Algorithm is used to identify the
optimal trade-off between performance and energy
consumption of mobile cloud computing [18]. The algorithm
considers task execution position, task execution sequence,



and operating voltage and frequency in order to maximize
performance, efficiency, and operational cost of computation.

A new method of optimization, named Ant Mating
Optimization (AMO), has been created to identify the best
balance between the time it takes for a system to complete a
task and the amount of energy used by resources in fog
computing. [19]. Ant Mating Optimization (AMO) improves
a task-scheduling algorithm that aims to decrease energy
consumption and increase the efficiency of the fog
computing platform.

Longest job to fastest processor (LJFP) and minimum
completion time (MCT) techniques are used in the improved
initialization of particle swarm optimization (PSO)
employing heuristic algorithms. For the makespan,
performance, and energy consumption measures in cloud
infrastructure, the algorithms’ performance is assessed [20].

The current research in energy-aware optimization
techniques is static and computation specific. These
techniques cannot be applied to any generic computation.
Also, they do not take advantage of the constantly changing
state of the computation and the resources. There is a need
for a generic framework that makes use of different
optimization techniques to dynamically identify the optimal
scheduling solution for a computation based on energy
consumption, performance, and resource state. The
framework takes into account different combinations of
cluster configuration and computation characteristics to find
the optimal scheduling solution.

III. OPTIMIZATION TECHNIQUES

Optimization techniques are used to find the optimal set of
parameters for a model that minimizes the error or
maximizes the performance. It is important to understand the
different optimization techniques available in order to be able
to choose the most appropriate method for a specific problem
or dataset. In this Section, a survey of various high-level
optimization concepts and their examples is presented. The
purpose of this survey is to provide an overview of various
optimization techniques that are commonly used.

A. Discrete Optimizations

Discrete optimization is the process of finding the optimal
solution from a finite set of discrete options.

1) Linear Programming: This is a method used to optimize
a linear objective function, subject to constraints represented
by linear equations or inequalities [21].

2) Simplex Method: This is a popular algorithm for
solving linear programming problems, which iteratively
improves a solution by moving to adjacent vertices of the
feasible region [22].

3) Interior-Point Methods: This is a family of algorithms
that solve linear programming problems by finding a solution
that is close to the central point of the feasible region [23].

4) Gradient Descent: This is an optimization algorithm that
iteratively improves a solution by moving in the direction of
the negative gradient of the objective function [24].

B. Heuristic Approaches

Heuristics optimization is a method of solving problems
by using practical approaches or rules of thumb, rather than
relying on a systematic, theoretical solution.

1) Hill Climbing: Hill climbing is an optimization method
that begins with an initial solution and gradually makes
small adjustments to it in order to enhance the solution. This
technique is commonly used to locate a nearby optimal
solution [25].

2) Greedy Algorithm: A greedy algorithm constructs a
solution piece by piece, always opting for the next piece that
provides the most obvious and immediate benefit [26].

3) Beam Search: Beam search is a method of searching for
solutions that uses heuristics to examine a small subset of the
most likely solutions at each step, rather than exploring all
potential solutions [27].

4) Randomized Local Search: Randomized Local Search
is a heuristic optimization algorithm that starts with a random
initial solution and iteratively applies random changes to it in
order to find an improved solution [28].

C. Metaheuristics Optimisation

Metaheuristics optimization is a method of solving complex
problems by using high-level procedures, or heuristics, that
guide the search for an approximate solution.

1) Genetic Algorithm: A genetic algorithm (GA) is a type
of optimization algorithm inspired by natural selection. It uses
techniques of reproduction, mutation, and selection to find the
best solution for a given problem [29].

2) Grasshopper Algorithm: The Grasshopper algorithm
(GHA) is an optimization algorithm that uses the concept of
swarm intelligence and it is inspired by the movement of
grasshoppers. It uses a population of potential solutions that
move randomly, and then converge to the optimal solution
through a process of selection and imitation [30].

3) Particle Swarm Optimization (PSO): Particle Swarm
Optimization (PSO) is a population-based method that is
modeled after the collective behavior of birds and fish such
as flocking and schooling. It uses a population of particles
that move in the search space to find the optimal solution
through a process of exploration and exploitation [31].

4) Cuckoo Search (CS): Cuckoo Search (CS) is an
optimization algorithm inspired by the behavior of cuckoos,
it can be used to find an optimized scheduling solution by
iteratively updating the position of each cuckoo in the
population based on the energy consumption and
performance of the computation [32].

Meta-heuristic Optimisations include population-based
algorithms and are powerful optimization techniques, but do
not guarantee finding the global optimum. This indicates that
the achieved policy or output might not translate or always
work optimally with other workflow executions. To mitigate
this problem some variants such as the Artificial Bee
Algorithm (ABA) have been developed to find the global
optimum [33]. These variants can be used to find generalized



scheduling techniques that might work with different
computations and resources.

D. Machine Learning

Machine learning optimization is the process of finding the
best set of parameters for a model to minimize its error on a
given dataset.

1) Reinforcement Learning: Reinforcement learning can
optimize scheduling decisions by gaining insight from the
system’s feedback. By analyzing the energy consumption
and performance of the computation, it can continuously
improve the scheduling decisions over time [34], [35].

2) Q-learning: Q-learning is a form of reinforcement
learning that can be utilized to identify the best scheduling
decisions by studying the energy consumption and
performance of the computation [34], [35].

3) Neural Networks: Neural networks can be utilized to
depict the correlation between scheduling decisions and
energy consumption and performance of computation. They
can be trained on past data to anticipate energy consumption
and performance of new scheduling decisions [34], [35].

4) Decision Trees: Decision trees can be used to depict
the association between scheduling decisions and energy
consumption and the performance of computation. Using
historical data can enhance the accuracy of Decision Tree
predictions [34], [35].

E. Multi-Objective optimization

Multi-objective optimization techniques are used to
optimize scheduling solutions by taking into account
multiple objectives, including energy consumption, accuracy,
and performance. These techniques can find a set of optimal
solutions that balance the various objectives and make
trade-offs between them.

1) Non-dominated Sorting Genetic Algorithm (NSGA):
NSGA is a genetic algorithm that is capable of dealing with
multiple objectives. It can be used to find optimal solutions
with minimal or no trade-offs between the different
objectives [36].

2) Multi-objective Particle Swarm Optimization (MOPSO):
MOPSO is a particle swarm optimization algorithm that can
handle multiple objectives simultaneously and can be used to
identify the trade-offs between energy consumption and the
performance of the computation [37].

3) Strength Pareto Evolutionary Algorithm (SPEA): SPEA
is an evolutionary algorithm based on the concept of Pareto
Optimality, which states that a solution is considered optimal
when no other solution can improve one of its objectives
without compromising at least one of the other
objectives [38].

4) Multi-objective Cuckoo Search (MOCS): MOCS
combines the Cuckoo Search algorithm with NSGA-II
(Non-dominated Sorting Genetic Algorithm II) to handle
multiple objectives in optimization [39].

It’s important to note these algorithms depend on multiple
factors such as the characteristics of the problem, the available

resources, and the desired level of accuracy and computational
time. Some algorithms may work better for certain types of
problems or settings than others, and it may be necessary to
experiment with different algorithms to find the best solution.

IV. OPTIMIZATION-BASED SCHEDULING FRAMEWORK
FOR ENERGY AND PERFORMANCE OPTIMIZATION

The previous section presented the different optimization
techniques that can be used to identify scheduling solutions
that consider the energy consumption and performance of a
computation. In this section, a framework that makes use of
these optimization techniques and focuses on the energy
consumption and performance of workflow computations has
been presented.

Figure 1 illustrates several proposed adaptive optimization
approaches for workflow computation, with a focus on energy
efficiency and performance. There are five main parts of the
computation process:

A. User Input
User Input is the input data from the users to the system.

Data such as the computation and a list of user constraints or
objectives will be provided. The computation can include
any scientific workflow and the user constraint includes the
objectives that the system will try to achieve such as a fixed
cost budget for computation, the accuracy of results, the
targeted performance, maximum heat generation threshold,
the energy consumption of the resources, etc.

B. Inherent Static Information
This is the information that does not come from the user

but is inherently required by the optimization algorithms to
make decisions. This information can contain data such as
the available computing resources and their configuration,
the current costs of consuming energy, the current
networking setup of the nodes, any special characteristics of
the nodes, etc.

C. Optimization Approaches
This is the core of the system. There are multiple

approaches identified and will be implemented in the system.
Based on the user input, the complexity of the workflow,
user constraints and objectives, and inherent information, a
specific optimization technique will be used. This
optimization approach will identify the optimal scheduling
solution that satisfies the objectives of the system. The
original scheduling policy of the workflow will be
overwritten by the newly formed optimized schedule. The
optimization approach used also needs to consider
information such as data dependencies, the complexity of
individual jobs, bottlenecks, etc. in the computation.

D. Executing the schedule
The optimal schedule will then be executed on the compute

resources and monitored for their execution. Workflows are
usually managed by Workflow Management Systems such as
Pegasus [40] that uses HTCondor [41] as a scheduler for the
workflow.



Fig. 1. Proposed adaptive optimization approaches for workflow computation focusing on energy and performance

E. Dynamically collected information
A constant feedback loop from the current execution of

the computation will be used to further improve the optimal
schedule dynamically. The current execution state of the
computation will be constantly monitored for its energy
consumption, the performance of individual jobs, the
performance of the compute resources, memory usage, the
temperature of the resources, etc.

The proposed framework in Figure 1 uses optimization
techniques to find an optimal scheduling solution for
workflow computation that focuses on energy consumption
and performance. This could have several implications on the
current domain of workflow scheduling optimizations.

1) The proposed framework could lead to more efficient
and cost-effective solutions for large-scale workflow
computation. By considering both energy consumption
and performance, the framework may be able to
balance the trade-offs between these two factors and
find a solution that is more optimal than if either factor
were considered in isolation.

2) The proposed framework may also lead to improved
performance and faster completion of workflow
computation tasks, as it takes into account the impact
of scheduling decisions on overall performance.

3) The use of multiple optimization techniques in the
framework could also make it more robust and
adaptable to different types of workflow computations
and changing conditions such as cloud computing,
distributed computing, and edge computing.

4) The proposed framework could also have implications
for industries and organizations that rely heavily on
workflow computation as it could potentially lead to
significant cost savings in terms of energy consumption
and improved performance.

V. CONCLUSION

As the scale and complexity of scientific workflows
continue to grow, it is increasingly important to focus on
different optimizing approaches that can be used for finding
an optimal scheduling solution for workflow computation,
with a specific emphasis on the energy consumption and
performance of the computation. The paper has presented a
variety of optimization approaches that can find an optimal
solution based on different objectives.

This paper also proposed an adaptive system that utilizes
different optimization approaches to develop an optimal
execution schedule for workflow computation. This proposed
system uses the objectives provided by the user and data
from different sources to develop a schedule that satisfies the
objectives of the system. The proposed system is intended to
be a comprehensive solution that can adapt to different
scenarios and workloads.

In future work and expansion, the approach and design of
the proposed system are to be formalized and implemented.
The proposed system will be evaluated by conducting
experiments on real-world workflow computation
benchmarks. The optimized schedule will be evaluated
against the standard execution of the workflow for energy,
performance, and achievement of the system objectives.
Another approach can include exploring the trade-offs
between energy consumption and performance, and to
develop new optimization techniques that better balance
these competing objectives. It would be interesting to
investigate how the proposed system can be applied to other
types of workloads and to further evaluate the system in
different scenarios.
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