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Abstract—Scientific workflows consist of multi-step compu-
tational tasks executing in the form of data flow and task
dependencies. These workflows are defined to be long running
and fault tolerant. There is evidence of improving performance
achieved through run-time adaptive changes made to the work-
flow execution. The aim of the work presented in this paper
is to highlight the benefits that adaptive scheduling of scientific
workflows have on the energy consumption of the computation.
In this paper, an architecture for the implementation of an
energy-aware adaptive scheduler is presented. The monitoring,
analysis, planning and execution (MAPE) model from autonomic
computing is used to propose a set of run-time modifications that
will be used by the scheduler to improve the performance and
energy consumption of the workflow.

Index Terms—Cluster Computing, Energy-Aware, Workflows,
Adaptive, MAPE

I. INTRODUCTION

Autonomic Computing (AC) is a concept that aims to make
adaptive decisions using high level policies [1]. Autonomic
computing constantly checks for changes in the environment
and adapts itself to unpredictable changes. It was developed to
overcome the complexity of computing system management
and to reduce the threat to further growth. An autonomic
computing framework comprises of local and global control
schemes. These schemes have sensors (for monitoring), effec-
tors (for adjusting to environment), knowledge, and planner
for run-time awareness. All these components work in tandem
to help the computing system to be self and environmentally
aware. This architecture is referred to as the Monitor-Analyze-
Plan-Execute (MAPE) model [2].

Workflows have been increasingly used to execute com-
plex workloads [3]–[5]. Workflows are collection of multiple
smaller tasks that work together to achieve a complete compute
goal. These individual tasks can make use of parallel comput-
ing to achieve higher performance. Scientific workflows are
among the most complex workloads and can include extremely
complex interconnection of tasks to achieve a single scientific
goal. These workflows and the computing resources have been
traditionally optimized for performance and throughput.

The general assumption is that a computation with more
resources will perform better. This assumption takes into
consideration the amount of resources and the performance of
the computation. With ever growing concerns for global energy
shortages, it is necessary to understand the energy implications
of such high performance computations. There are many tools
available to improve the performance of compute clusters and
workflows but there is a lack of generally available tools

for considering and improving the energy consumption of
scientific workflows [6].

The aim of this paper is to motivate the development of
an adaptive scheduler that takes into consideration the energy
consumption of a scientific workflow and its underlying jobs.
The scheduler needs to be able to understand the workflow
at the job level and possibly the computation level and make
changes to the workflow or the cluster to better accommodate
the execution of the workflow. A specific set of generic and
workflow-specific requirements and policies are also identi-
fied. The scheduler makes use of the MAPE model to adapt
the configuration of the workflow or cluster to maximize the
performance and/or reduce energy consumption.

The key contributions of this paper are as follows: (i) a
survey of the current state of energy aware and adaptive
workflow schedulers; (ii) identification of run-time adaptations
that can be captured using the MAPE model; (iii) a conceptual
architecture for an energy-aware adaptive scheduler for scien-
tific workflows and (iv) a proof of concept implementation and
evaluation of the adaptive scheduler.

The remainder of this paper is structured as follows: Sec-
tion II provides literature on scientific workflows, energy-
aware workflow schedulers, and autonomic computing. MAPE
based possible adaptations that can be done on scientific work-
flows are presented in Section III. A conceptual architecture
for developing an energy-aware adaptive scheduler is provided
in Section IV. A proof of concept adaptive scheduler has been
developed and evaluated in Section V. Finally, Section VI
provides conclusions and future work.

II. MOTIVATION

System management and optimisations of tasks have tradi-
tionally been done manually or by complex applications [7].
With ever increasing complexity of tasks and systems in
computation, a number of models have been proposed to
automate this process. These models have managed to achieve
improved performance by adapting to their environment at
every level of computation [8]. These models can be used in
scientific computation to achieve similar results while focusing
on a particular aspect of computation. Based on the current
world’s increasing energy usage concerns, these models can
be used to monitor the energy consumption of the computation
and develop energy efficient methods for computing [9], [10].
The remainder of this section provides a background on (i)
Scientific Workflows, (ii) Energy-Aware Scheduling, and iii)
Autonomic Computing.



A. Scientific Workflow

Scientific computations have grown in complexity and size
in recent years [11]. Workflows are a common method to
execute and handle complex computations. Workflows com-
prises of discrete step by step processes for executing the
computation. A large computation is broken down into a large
number of individual jobs that are executed in batches and
parallely. These individual jobs have unique characteristics
such as input data, resource requirement, dependencies, etc.

Montage [12], [13] is a software toolkit used in Astropho-
tography to combine Flexible Image Transport System for-
mat (FITS) images of the sky into composite images called
mosaics. A montage is a series of separate images that are
combined to obtain a continuous sequence. Astrophotography
makes use of this concept to create high definition mosaics
of different astronomical objects such as stars, planets, etc.
Highly detailed images of small portions of the sky are
obtained and combined to create mosaics of the sky.

The Montage Workflow preserves the calibration and po-
sitional fidelity of the original input images [9]. Montage
Workflow comprises of different tasks to analyze, combine,
verify, export, etc. that develops the relevant mosaic based
on the input parameters. Montage workflow comprises on 8
levels of jobs that are dependent on each other. Each level
corresponds to multiple instances of a single job that compute
different data and execute parallely. The 8 jobs in the Montage
Workflow are mProject, mDiffFit, mConcatFit, mBgModel,
mBackground, mImgtbl, mAdd and mViewer. Each job is
dependent on the previous jobs for their input. Montage
has been classified as an input/output-bound workflow [14]
compared to other scientific workflows. mProject is the most
compute intensive job in the Montage Workflow. Depending
on the area of sky to be created, there are two different input
variables that can be controlled by the user – the area (degrees)
of the sky and the colour channels from which the mosaic
should be generated.

Many different workflows have been generated for spe-
cific computations required by researchers. Workflows are
increasingly being used in scientific computation due to its
scalable and consistent nature. Multiple jobs in each level
of the workflow can be executed in parallel. These parallel
jobs scale according to the size of data or the requirements
of the user and can span thousands to millions of jobs
which can take a long time to execute. Due to the inherent
parallelism of the jobs, researchers have developed different
techniques to achieve higher performance from the workflow
execution. Global energy usage has been on ever rise due to the
increasing computation and it is important to focus on energy
efficient computing rather than increasing the throughput of a
computation [6], [15]–[17].

B. Energy Aware Workflow Schedulers

Parallel computation has always been a go to for huge
complex computations. Traditionally, parallel systems have
been highly optimized to maximize the performance of the
compute resources. With ever increasing need for compute

intensive computation and longer execution times, especially
in workflow execution, researchers are focusing more on
‘energy efficient computation’ rather than ‘high performance
computation’ [9]. Due to this, multiple techniques have been
developed to reduce the cost of computation.

[18], [19] developed a scheduling algorithm that tries to
minimize the energy consumption of the computation while
meeting the time constraints. Similar work was conducted
by [20] in which the scheduler made use of polynomial
time algorithm to find the optimal resource allocation for a
computation in order to minimize the cost of computation.

Edge computing is gaining popularity due to their scalablil-
ity and ease of use. Majority of the computation is conducted
on remote High Performance Compute Resources. Normally,
researchers do not have the necessary knowledge to develop
or manage their own computing resources. They depend on
remote data centers to execute and manage their computation.
Due to their remote nature, edge computing often includes
huge data transfers and the inter-dependencies between the
tasks act as a overhead. Researchers have been focusing on
reducing the energy consumption of edge computations as
well. [21] developed a scheduler that reduced data-transfer and
inter-dependency of tasks in edge computing. They achieved a
reduction of 22.7% in the cost of computation while providing
similar performance. [22] developed a scheduling heuristic
that reduces the energy consumption of cloud computation
conducted on Virtual Machines as well as the systems that are
outside the system.An energy-aware task scheduling approach
is developed by [23] that dynamically scales the voltage and
frequency of edge compute resource in order to reduce the
energy consumption of computation.

C. Autonomic Computing

In modern times, computing systems have reached a com-
plexity where the manual effort to keep systems up and
functional is getting out of hand [24]. Autonomic computing
concerns with automating system management and optimising
tasks while adapting to their environment. Autonomic systems
have to be manually guided on a high level but are expected
to decide the steps that needs to be done in order to keep the
systems stable. These systems constantly adapt to the changing
environment conditions and adjust their operations to achieve
a certain goal.

The adaptation of the system to its environment is managed
by an autonomic manager. The manager is effectively a group
of control loops that monitor the changes in the system and
adapts according to the system goals. MAPE model comprises
of multiple stages of control loops where (M) stands for
monitoring, (A) for analyzing, (P) for planning, and (E) for
execution. A high level description of MAPE model in a
compute system is illustrated in Figure 1.

An autonomic system is structured into two components -
Managed Resource and Autonomic Manager [7], [24]. The
managed resource includes the system or computation that
is not adaptive initially but is being managed by the auto-
nomic manager. Autonomic manager makes use of sensors



Fig. 1. MAPE Model (Adapted from [2])

and effectors to manage the resource. Based on the data from
the sensors, the autonomic manager takes decisions that are
implemented using the effectors.

The autonomic manager has four distinct functions which
are executed in a continuous loop. These functions are Moni-
tor, analyze, Plan and Execute. The model assumes that some
knowledge of the system is shared and adapted across all the
functions.

Monitor uses the sensors from the managed resource and
generates data that is consumed by the Analysis function.
These sensors can include any data such as Errors, logs,
computation data, system information, etc. All of this data
is used in the decision process needed to adapt the resource
to its surrounding.

Analysis processes the monitoring data and searches for
potential problems, bottlenecks and opportunities for optimi-
sations. The analysis function comes up with all the different
changes that can be made to the resource based on its charac-
teristics. These changes don’t necessarily have to improve the
computation or resource.

Planning takes into consideration the current state of the
system, the goal of the system and messages from the analysis
function to decide the appropriate actions to be performed
on the resource or computation. The function makes use of
predefined policies that are used to achieve the system goal.

Execution makes use of the planned changes and the
effectors to implement the changes. These effectors can be
in any form such as variables, resources, functions, etc.

Background and literature in the field of scientific work-
flows, energy-aware computing and autonomic computing has
been presented in this section. The current research in the
domain of energy aware scheduling are workflow specific
and do not take into account the generic optimizations or
adaptations that can be made on workflow and cluster level.

III. ENERGY-AWARE WORKFLOW ADAPTATIONS
AS MAPE BASED DECISION MAKING

Adaptations to the execution of the workflow or the cluster
can be done during run-time with the help of new knowledge
obtained from the current behaviour of the computation [25].
This new knowledge can be used to schedule jobs according
to a specific goal [26], [27]. The performance of long run-
ning scientific workflows stands to benefit from adapting to
changes in their environment. Autonomic Computing provides
methodologies for managing run-time adaptations in managed

systems. A common understood way of achieving this is to
use the MAPE model. The following describes the monitoring,
adapting, planning and execution for workflow adaptations.

A. Monitoring

Scientific workflows, as shown in Section II, consists of
number of inter-dependencies and data transfer between the
tasks. These workflows are executed on compute resources.
Monitoring different aspects of the workflow execution can
help in analysis and planning the adaptive changes required
for improvement of workflow. The following is a list of
information that can be monitored:
M.1 Total compute resource This is a measure of all the

computing resources in a compute cluster. This can
include both the free and used resources.

M.2 Available computing resource This is a measure of all
the available computing resources that can be used for
executing a task.

M.3 Progress of the workflow. This is a measure of how
the workflow has progressed. Details of different tasks
that have been completed and the tasks that are yet to be
completed.

M.4 Progress of a service. This is a measure of how the
individual task has progressed. It also monitors the input,
output and low level computation of the task.

M.5 Completion of a service. This monitors the completion
rate of tasks. This will focus on individual tasks and help
determine the factors affecting their completion rate.

M.6 Data Usage of a service. This is a measure of the amount
of data or bandwidth that a task is using.

M.7 Load on an existing computing resource. This is
measure of how a compute resources is being utilized.
The amount of resource being used and how much is
available for execution of new tasks.

M.8 Memory usage of an existing computing resource. This
is a measure of the amount of memory being used by a
task on the compute resource.

M.9 Load on the computing network. This is a measure of
the network resources being used.

Monitoring component inside the Autonomic Manager col-
lects this data with the help of sensors and system log files.
Monitoring the available resources and computations can help
in determining the appropriate pair of task-resource pair to
maximise the throughput of the computing resource. Likewise,
monitoring the current state of the computation can help
understand the overall factors affecting the performance and
can be used to improve other workflow executions.

B. Analysis

Analysis component of the Autonomic Computing, as the
name suggests, analyzes the data from the Monitoring com-
ponent based on certain rules and specifications and presents
the data to the next component in Autonomic Computing. A list
of possible analysis criteria for the study is provided below:
A.1 There is a bottleneck. Bottleneck occurs when a number

of different tasks need to be completed in order to



progress to the next step in computation. The compu-
tation is stuck until all the task-dependencies have been
completed. This may be detected by using M.3, M.4, M.5
and M.9 data.

A.2 There is resource allocation imbalance. This is where
the allocation of resources is not homogeneous. Some
tasks may be executed on new resources even though
the old resources can execute them. Allocation imbalance
may be detectable by M.1, M.2, M.7 and M.8 data.

A.3 Likely to miss the system goal. The current progress of
the workflow and the progress of each task being executed
can help in estimating whether the system goal can be
achieved or not. For this, data from M.3 and M.4 can be
used to compare with the original schedule.

A.4 Is there additional free capacity. This is to measure
the amount of resource that is underutilised for extended
period of time. This may be detectable by M.2, M.7 and
M.8 data

A.5 There is a new task available. This determines the next
task in the workflow to be executed. This may be done
by analysing the M.3 data.

A.6 There is a new resource available. This determines if
there is any additional resource that is made available for
the computing. This may be detected by M.1 and M.2
data.

A.7 Analyzing the node utilisation. It may be possible to
analyze the individual node utilisation by analysing the
data from M.6, M.7, M.8 and M.9 data.

C. Planning

Planning component in the Autonomic Manager decides on
the necessary adaptations to be conducted in order to achieve
the system goal. A set of generic policies and the analysis
of the data in Section III-B govern these adaptations. These
adaptations may led to the removal of one or more problems
(e.g., A.1- A.3) in the computation.
P.1 To prioritise and remove the bottleneck at the start.

The bottleneck task can be completed on priority basis
by completing it’s dependencies first. This is in response
to the problems detected by A.1 and A.3.

P.2 To reschedule the task that failed. Any failed task needs
to be analyzed and rescheduled on different resource or
configuration based on the reason for its failure. This is
in response to problem A.2, A.3 and A.5.

P.3 To improve the performance by increasing the parallel
computing resources. Based on the type of computation
and number of parallel independent jobs, it may be
possible to complete the computation faster by increasing
the resources to complete the parallel jobs faster. This is
in response to A.3, A.4, A.5 and A.6.

P.4 To make a task complete faster by smartly schedule
a task to specific nodes. Different resources might
specialise in different types of executions (e.g. Graphi-
cal Processing Unit (GPU) for image processing). Such
tasks can be smartly scheduled on unique resources on
which they may be able to complete faster and improve

the performance of the whole computation. This is in
response to A.2, A.5, A.6 and A.7.

P.5 To assign free resources to the new tasks. The available
resources needs to be smartly allocated to the tasks so as
to maximise the utilisation and reduce the overheads. This
is in response to problems/ opportunities detected by A.2,
A.4 and A.7.

D. Execution

The Execution component of the Autonomic Manager is
responsible for carrying out the plan. This is mainly done
by invoking the Effectors which can include multiple steps
such as suspending the workflow, making changes to the
environment variables, upcoming task, cluster resources or
hardware components and resuming the workflow.

IV. ENERGY-AWARE ADAPTIVE SCHEDULER

An energy-aware adaptive scheduler for scientific workflows
has the potential to substantially reduce the energy consump-
tion of a large amount of computation on clusters. The aims
of this paper are to argue for and propose such a scheduler.

A. Requirements for an Energy-Aware Adaptive Scheduler

An energy-aware adaptive scheduler aims to achieve reduc-
tion in the energy consumption of the computation by acting
and adapting on the current execution data of the computation.
To achieve this, the following high level requirements are
identified that need to be met:
R1 The proposed adaptive scheduler shall attempt to dynam-

ically reduce the energy consumption of the execution by
adapting different policies depending on the current state
of the execution;

R2 The proposed adaptive scheduler shall not affect the
output of the execution;

R3 The scheduler shall have a set of pre-defined goals that
it tries to achieve (percentage of energy consumption
reduction, amount of resources to use, etc.);

R4 The proposed adaptive scheduler shall allow the user to
specify their own goals;

R5 The proposed adaptive scheduler shall handle any faults
in the workflow gracefully and adapt the execution ac-
cordingly;

R6 The proposed adaptive scheduler shall make use of a feed-
back loop to collect the current execution data, analyze it
and determine the optimal adaptations in order to achieve
the goal set by the user;

R7 The different steps in the decision making of the adaptive
scheduler shall be logged for debugging;

R8 The proposed adaptive scheduler shall allow the logged
data to be used by different analysis tools.

B. Proposed Energy Aware Adaptive Scheduler

The high level generic design of the adaptive scheduler is
presented in Figure 2. The design is guided by the require-
ments set out in the previous section. The scheduler tracks
the current state of the execution with the help of sensors



or logs and dynamically optimizes the workflow to achieve
the goal set out by the user. FEPAC, a framework developed
for collecting and analyzing the execution data [6], is used
to create a constant feedback loop between the workflow
execution and the adaptations conducted by the scheduler by
using the MAPE model (shown by red lines).

Fig. 2. Energy Aware Adaptive Scheduler

The proposed scheduler, by default, constantly analyzes the
current state of the execution for any exploits that can be used
to improve the performance or the energy consumption of
the workflow. This can be done through number of policies
that are pre-defined and known to achieve reduction in energy
consumption R1 and R6. The proposed scheduler only affects
the scheduling of the jobs and does not change the underlying
data or computation of the workflow R2.

A set of predefined goals and thresholds are provided to
the adaptive schedule. A user specified configuration file can
overwrite these default goals and thresholds. This aligns to the
requirement R3 and R4. These goals or thresholds can be a
result of budget or compute resources constraints, workflow
characteristics, etc. The scheduler does not aim to replace
any existing scheduler that is executing the workflow but
works in tandem with the scheduler by editing the constraints
to the scheduler to achieve the user’s goal. The proposed
scheduler tests the workflow for any faults before submitting it
to the scheduler. The default scheduler can handle any breaks
gracefully if occurred R5.

The proposed scheduler logs each step of the MAPE model
(monitoring data, analysis output, planning decisions, execu-
tion triggers) that is used to perform adaptations. This helps in
better understanding which policy was used by the scheduler
and how it was implemented in case of debugging R7. Along
with this, the scheduler can allow export of the logged data
so that it can be analyzed by any third party tools R8.

C. Possible energy-focused scheduling adaptions

The MAPE approach to decomposing adaptations enables
a range of adaptations to be supported. The aim of these
adaptations is to have an impact on the energy consumption
of the executing workflow, ideally leading to a reduction. The

following are a selection of possible adaptations which can be
supported with a energy-focused adaptive workflow scheduler:

• Change the allocation of workflow jobs to different
physical processors to change the energy profile of the
job.

• Change the number of jobs allocated to each physical
node to change the overall load pattern across nodes.

• Switching on or off physical nodes in order to change
the overall available computation capacity or the energy
consumption of the cluster.

• Change the allocation proportion to different types of
nodes dependent on the performance per Watt for par-
ticular jobs of physical nodes.

• React to changes in the usage of nodes which will have
an impact on the availability of physical nodes.

• Change the priority of execution of specific workflow jobs
to force jobs to be allocated to resources sooner.

• Reschedule workflow jobs if physical cluster nodes are
using more than expected energy.

V. EVALUATION

A generic design for an energy aware adaptive scheduler
is presented in the previous section. To further confirm the
functioning of the scheduler, a proof of concept scheduler
is developed and evaluated on a scientific workflow in this
section.

Single board computers have always been known for their
energy efficient nature [6], [9], [28]. For the purposes of
this study, a 10 node heterogeneous single board cluster was
developed. This was done in order to better understand the
effect of different compute resources have on computation.
This also help to evaluate the proof of concept scheduler by
introducing different compute resources.

The 10 nodes included five Raspberry Pi 4B (Node IDs
- 1 to 5) with 2GB RAM, Broadcom BCM2711 Quad core
ARM Cortex-A72 processor and five Raspberry Pi 3B+ (Node
IDs - 6 to 10) with 1GB RAM, Broadcom BCM2837 Quad
code ARM Cortex-A53 processor. The nodes are connected to
each other and powered by 2 Netgear GS110TP switches and
Power over Ethernet (PoE), respectively. This enabled easy
monitoring of their energy usage through the inbuilt sensors
of the switches.

The 10 node cluster was managed by a x86 Linux based In-
tel NUC (8 core with Linux Mint OS (https://linuxmint.com/,
accessed on 7 October 2022) that acted as a master node.

The Pegasus Workflow Management System (WMS) was
used to manage the submission, management and execution
of the workflow on the cluster [29]. Pegasus makes use of
HTCondor [30], a batch job scheduler and resource manage-
ment system, to submit and execute jobs on the cluster. The
1.5 degrees variant of the Montage Workflow (see Section II)
was executed on the cluster of 10 nodes. As the Raspberry Pi’s
(RPis) have quad code processors, HtCondor considers each
core as an independent execution resource/ thread. Considering
that the cluster is made up of 10 Rpis, there are total of 40
threads that can execute jobs in parallel.

https://linuxmint.com/


The standard execution of the workflow (seel below) is
compared with the execution of the adaptive scheduler and
the performance and energy consumption of the computation
is collected and analyzed. Two major metrics were used to
compare the standard and adaptive scheduler’s execution –
amount of resources being used (illustrated by Figures 3, 5
and 7), and total number of jobs being executed on the
cluster (illustrated by Figures 4, 6 and 8). The jobs that are
being executed on the cluster nodes are being considered in
the analysis of the data. Master node specific jobs such as
file/folder creation or file transfers are not considered.

A. Normal/ Standard execution

Standard execution of the Montage Workflow includes creat-
ing the workflow using Pegasus and submitting it to the cluster.
There are no extra configurations associated with executing
the workflow. All the default and standard configuration op-
tions are used. This experiment denotes the normal workflow
execution that any scientist performs using Pegasus. The data
from this experiment is considered as a baseline for any future
comparisons between the different policies of the adaptive
scheduler.

The execution data of the experiment is shown below.
Figure 3 illustrates the number of active threads on each node
during the execution of the workflow. The X-axis indicates
the execution time (in seconds) of the workflow at any given
instant and the Y-axis indicates the node ID. Different usage
of nodes are denoted by different colored dots. The analysis
only considers the jobs that are executed on the cluster nodes.

Fig. 3. Number of Active Threads per node for a Montage 1.5 degree
workflow for standard execution.

Figure 4 illustrates the breakdown of the jobs that are being
executed on the cluster and the energy consumption of the
cluster. The X-axis indicates the execution time (in seconds)
of the workflow at any given instant. The left Y-axis is the
instantaneous energy consumption of the cluster and the right
Y-axis denotes the number of jobs for each job type being
executed on the cluster. Different job types are denoted by
different colors.

Fig. 4. Number of tasks and Energy Consumption over workflow execution
time for standard workflow execution.

The standard execution of the Montage workflow on the
heterogeneous cluster took 10,730 seconds (approximately 2
h and 59 min). For majority of the execution, the cluster
resources were being fully utilized (denoted by orange color
in Figure 3). As seen from Figure 4, the cluster uses maxi-
mum energy during the execution of mProject jobs. This is
expected as the mProject job is highly compute intensive and
maximizes the resource computing power during execution.
As the mProject jobs are completed and other jobs start to
execute, a drop in the energy consumption of the cluster is
observed that shows that the other jobs are comparatively less
compute intensive. During the total execution of the workflow,
the computation consumed around 154.07 Watt-hr of energy.

B. Adaptive Scheduling - Reducing Energy Consumption -
Adapting after 1st set of jobs are completed

A proof of concept adaptive scheduler based on the design
in Section IV was developed and the Montage workflow is
executed using it. The Adaptive scheduler is configured to
achieve reduction in energy consumption of the computation.
The scheduler waits for the first set of jobs from different
nodes to complete and schedules the remaining jobs according
to the analysis of the data of the executed jobs.

The execution data of the experiment is shown below.
Figure 5 illustrates the number of active threads on each node
during the execution of the workflow. The X-axis indicates
the execution time (in seconds) of the workflow at any given
instant and the Y-axis indicates the node ID. Different usage
of nodes are denoted by different colored dots. The analysis
only considers the jobs that are executed on the cluster nodes.

Figure 6 illustrates the breakdown of the jobs that are being
executed on the cluster and the energy consumption of the
cluster. The X-axis indicates the execution time (in seconds)
of the workflow at any given instant. The left Y-axis is the
instantaneous energy consumption of the cluster and the right
Y-axis denotes the total number jobs being executed on the
cluster. Different jobs are denoted by different colors.



Fig. 5. Number of Active Threads per node for Adaptive Scheduler execution
of a Montage 1.5 degree workflow on a 10 node cluster - Waiting for
completion of first job on different nodes.

Fig. 6. Number of tasks and Energy Consumption over workflow execution
time for Adaptive Scheduler execution of a Montage 1.5 degree workflow on
a 10 node cluster - Waiting for completion of first job on different nodes.

As seen in Figure 5, the scheduler refrains from scheduling
any new job on the cluster until the first set of jobs are
completed. This is the policy that was set at the beginning
of the experiment and this helps the scheduler understand the
execution power of all nodes and take decisions accordingly.
The total execution time of the workflow was 13,636 seconds
(approximately 3 h and 47 min). The time does not include
the time taken by the scheduler to analyze, adapt the workflow
and reschedule the jobs.

The Rpi 4B finishes their first job faster (around 26 min
and 20 s) than Rpi3B+ that took around 1 h to complete.
The scheduler receives the execution data around that time
and reschedules the jobs according to the policies set out
in Section IV. In this particular experiment, the scheduler
decided that the Rpi 4B, in terms of energy consumption per
job, was better at executing jobs than the Rpi 3B+. Thus,

all the rescheduled jobs were only executed on Rpi 4B and
the Rpi 3B+ were powered off. This lead to the total energy
consumption of the 129.66 Watt-hr for the computation. The
energy consumption of idle Rpi4B after they complete their
jobs are also considered as they have not been powered off
during that time.

C. Adaptive Scheduling - Reducing Energy Consumption -
Normal execution until the 1st set of jobs are completed

In the previous experiment, it can be seen that the Rpi 4B
were idle during the execution of the jobs on Rpi 3B+. To
further investigate the energy consumption of the workflow
when the nodes are being fully utilized, the following experi-
ment was conducted.

In this experiment, the adaptive scheduler is configured to
achieve reduction in energy consumption of the workflow by
analyzing the first job being completed on different configu-
ration nodes. But until the first job is completed on nodes that
are different, the execution of the workflow is progressed in the
standard way. Once the first job is completed on the different
node, the scheduler will analyze, adapt and reschedule all the
non executing jobs in the workflow. This will make sure that
the new jobs are scheduled and executed according to the
policies set out in Section IV.

The execution data of the experiment is shown below.
Figure 7 illustrates the number of active threads on each node
during the execution of the workflow. The X-axis indicates
the execution time (in seconds) of the workflow at any given
instant and the Y-axis indicates the node ID. Different usage
of nodes are denoted by different colored dots. The analysis
only considers the job that are executed on the cluster nodes.

Fig. 7. Number of Active Threads per node for Adaptive Scheduler execution
of a Montage 1.5 degree workflow on a 10 node cluster - Normal scheduling
until the completion of first job on different nodes.

Figure 8 illustrates the breakdown of the jobs that are being
executed on the cluster and the energy consumption of the
cluster. The X-axis indicates the execution time (in seconds)
of the workflow at any given instant. The left Y-axis is the
instantaneous energy consumption of the cluster and the right



Y-axis denotes the total number jobs being executed on the
cluster. Different jobs are denoted by different colors.

Fig. 8. Number of tasks and Energy Consumption over workflow execution
time for Adaptive Scheduler execution of a Montage 1.5 degree workflow on
a 10 node cluster - Normal scheduling until the completion of first job on
different nodes.

As seen in Figure 7, the scheduler schedules the jobs
normally until the first job is completed on the different node.
This means that when the first job on Rpi 3B+ completed, the
Rpi 4B were executing their second set of jobs. This can be
confirmed from the figure that shows that Rpi 4B were always
fully utilized. The total execution time of the workflow was
10,531 seconds (approximately 2 h and 56 min). The time
does not include the time taken by the scheduler to analyze,
adapt the workflow and reschedule the jobs.

The scheduler than makes the necessary adaptations to the
remaining non-executing jobs of the workflow according to
its analysis. The execution time of each job on Rpi 4B and
Rpi 3B+ were the same as the previous experiment. Similar
to the previous experiment, the scheduler decided to schedule
any new jobs on the Rpi 4B only as it was a better candidate
to execute jobs in terms of energy consumption per job. The
Rpi 3B+ were considered powered off after the execution of
their first set of jobs. The total energy consumption of this
experiment was 115.82 Watt-hr.

D. Discussion

The results illustrated in Figure 3 might suggest that the
cluster resources are being fully utilized and that this is the
the optimal execution solution to the workflow. This is proven
wrong by the adaptive scheduler that finds a more optimal
scheduling of jobs that leads to reduced energy consumption
of the workflow. The standard execution of the workflow took
10,730 seconds with an energy consumption of 154.07 Watt-
hr. The first adaptation policy resulted in execution time being
13,636 seconds and consumed 129.66 Watt-hr of energy. The
execution time increased around 27% when executed using
the adaptive scheduler but a reduction of 15.84% is achieved
in energy consumption. This is expected as the scheduler was

configured to favoured more energy efficient nodes rather than
performance.

Similar results can be found when comparing the standard
solution with a different policy of the adaptive scheduler. The
second policy execution of the workflow resulted in execution
time of 10,531 seconds and an energy consumption of 115.82
Watt-hr. Coincidentally, this policy resulted in an increase in
performance as well as decrease in energy consumption of the
workflow execution. A decrease of 1.85% was obtained on
the execution time and a 24.82% reduction was achieved in
the energy consumption. Hence, the third policy resulted in
a reduction of both, execution time and energy consumption
compared to the standard execution.

The performance and energy consumption data obtained
from the three experiments conducted align and further so-
lidify the need for an energy aware adaptive scheduler. The
evaluation of the proof of concept adaptive scheduler shows
that it can help in reducing the energy consumption of the
workflow.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have argued for the need for adaptive
scheduling as an approach for energy-aware scientific work-
flow execution. It aims to provide mechanisms that reduce
the energy consumption of scientific computation without the
need for scientists to perform this optimisation themselves.
The approach described in this paper works at the scheduler
level by retrofitting adaptive behaviour to a cluster scheduler.

The approach is justified through a proof of concept imple-
mentation and evaluation. It demonstrated with a real-world
case study and cluster setup that using an adaptive energy-
aware scheduler can improve the performance and energy
consumption of scientific workflow computation. It presented
an analysis of energy-aware workflow execution using a cluster
scheduler and the reasons for improved energy consumption.

In future work, a more advanced adaptive scheduler will be
implemented and evaluated. The focus will be on workflow-
specific adaptations that understand the characteristics of
particular workflows as they are submitted. More advanced
approaches include the ability to schedule multiple different
types of workflow simultaneously on a set of shared resources.
The aim of this further work is to improve energy-efficient
workflow execution in more advanced and realistic scenarios.
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